Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1300. Sum of Mutated Array Closest to Target

Given an integer array arr and a target value target, return the integer value such that when we change all the integers larger than value in the given array to be equal to value, the sum of the array gets as close as possible (in absolute difference) to target.

In case of a tie, return the minimum such integer.

Notice that the answer is not neccesarilly a number from arr.

Example 1:

Input: arr = [4,9,3], target = 10
Output: 3
Explanation: When using 3 arr converts to [3, 3, 3] which sums 9 and that's the optimal answer.

Example 2:

Input: arr = [2,3,5], target = 10
Output: 5

Example 3:

Input: arr = [60864,25176,27249,21296,20204], target = 56803
Output: 11361

Constraints:

  • 1 <= arr.length <= 104
  • 1 <= arr[i], target <= 105

Solution: Binary Search

Find the smallest number x s.t. sum of the mutated array is >= target. Answer must be either x or x – 1.

Note, the search range should be [0, max(arr))

Time complexity: O(nlogm)
Space complexity: O(1)

C++

花花酱 LeetCode 1232. Check If It Is a Straight Line

You are given an array coordinatescoordinates[i] = [x, y], where [x, y] represents the coordinate of a point. Check if these points make a straight line in the XY plane.

Example 1:

Input: coordinates = [[1,2],[2,3],[3,4],[4,5],[5,6],[6,7]]
Output: true

Example 2:

Input: coordinates = [[1,1],[2,2],[3,4],[4,5],[5,6],[7,7]]
Output: false

Constraints:

  • 2 <= coordinates.length <= 1000
  • coordinates[i].length == 2
  • -10^4 <= coordinates[i][0], coordinates[i][1] <= 10^4
  • coordinates contains no duplicate point.

Solution: Slope and Hashset

This is not a easy problem, a few corner cases:

  • dx == 0
  • dy == 0
  • dx < 0

Basically we are counting (dx / gcd(dx, dy), dy / gcd(dx, dy)). We will have only ONE entry if all the points are on the same line.

Time complexity: O(n)
Space complexity: O(1) w/ early exit.

C++

花花酱 LeetCode 835. Image Overlap

You are given two images, img1 and img2, represented as binary, square matrices of size n x n. A binary matrix has only 0s and 1s as values.

We translate one image however we choose by sliding all the 1 bits left, right, up, and/or down any number of units. We then place it on top of the other image. We can then calculate the overlap by counting the number of positions that have a 1 in both images.

Note also that a translation does not include any kind of rotation. Any 1 bits that are translated outside of the matrix borders are erased.

Return the largest possible overlap.

Example 1:

Input: img1 = [[1,1,0],[0,1,0],[0,1,0]], img2 = [[0,0,0],[0,1,1],[0,0,1]]
Output: 3
Explanation: We translate img1 to right by 1 unit and down by 1 unit.

The number of positions that have a 1 in both images is 3 (shown in red).

Example 2:

Input: img1 = [[1]], img2 = [[1]]
Output: 1

Example 3:

Input: img1 = [[0]], img2 = [[0]]
Output: 0

Constraints:

  • n == img1.length == img1[i].length
  • n == img2.length == img2[i].length
  • 1 <= n <= 30
  • img1[i][j] is either 0 or 1.
  • img2[i][j] is either 0 or 1.

Solution: Hashtable of offsets

Enumerate all pairs of 1 cells (x1, y1) (x2, y2), the key / offset will be ((x1-x2), (y1-y2)), i.e how should we shift the image to have those two cells overlapped. Use a counter to find the most common/best offset.

Time complexity: O(n4) Note: this is the same as brute force / simulation method if the matrix is dense.
Space complexity: O(n2)

C++

花花酱 LeetCode 722. Remove Comments

Given a C++ program, remove comments from it. The program source is an array of strings source where source[i] is the ith line of the source code. This represents the result of splitting the original source code string by the newline character '\n'.

In C++, there are two types of comments, line comments, and block comments.

  • The string "//" denotes a line comment, which represents that it and the rest of the characters to the right of it in the same line should be ignored.
  • The string "/*" denotes a block comment, which represents that all characters until the next (non-overlapping) occurrence of "*/" should be ignored. (Here, occurrences happen in reading order: line by line from left to right.) To be clear, the string "/*/" does not yet end the block comment, as the ending would be overlapping the beginning.

The first effective comment takes precedence over others.

  • For example, if the string "//" occurs in a block comment, it is ignored.
  • Similarly, if the string "/*" occurs in a line or block comment, it is also ignored.

If a certain line of code is empty after removing comments, you must not output that line: each string in the answer list will be non-empty.

There will be no control characters, single quote, or double quote characters.

  • For example, source = "string s = "/* Not a comment. */";" will not be a test case.

Also, nothing else such as defines or macros will interfere with the comments.

It is guaranteed that every open block comment will eventually be closed, so "/*" outside of a line or block comment always starts a new comment.

Finally, implicit newline characters can be deleted by block comments. Please see the examples below for details.

After removing the comments from the source code, return the source code in the same format.

Example 1:

Input: source = ["/*Test program */", "int main()", "{ ", "  // variable declaration ", "int a, b, c;", "/* This is a test", "   multiline  ", "   comment for ", "   testing */", "a = b + c;", "}"]
Output: ["int main()","{ ","  ","int a, b, c;","a = b + c;","}"]
Explanation: The line by line code is visualized as below:
/*Test program */
int main()
{ 
  // variable declaration 
int a, b, c;
/* This is a test
   multiline  
   comment for 
   testing */
a = b + c;
}
The string /* denotes a block comment, including line 1 and lines 6-9. The string // denotes line 4 as comments.
The line by line output code is visualized as below:
int main()
{ 
  
int a, b, c;
a = b + c;
}

Example 2:

Input: source = ["a/*comment", "line", "more_comment*/b"]
Output: ["ab"]
Explanation: The original source string is "a/*comment\nline\nmore_comment*/b", where we have bolded the newline characters.  After deletion, the implicit newline characters are deleted, leaving the string "ab", which when delimited by newline characters becomes ["ab"].

Constraints:

  • 1 <= source.length <= 100
  • 0 <= source[i].length <= 80
  • source[i] consists of printable ASCII characters.
  • Every open block comment is eventually closed.
  • There are no single-quote or double-quote in the input.

Solution: Marking the block

The key of this problem is to mark the start and end of a block comment and handling new lines.

Time complexity: O(n)
Space complexity: O(n) -> O(1)

C++

花花酱 LeetCode 2111. Minimum Operations to Make the Array K-Increasing

You are given a 0-indexed array arr consisting of n positive integers, and a positive integer k.

The array arr is called K-increasing if arr[i-k] <= arr[i] holds for every index i, where k <= i <= n-1.

  • For example, arr = [4, 1, 5, 2, 6, 2] is K-increasing for k = 2 because:
    • arr[0] <= arr[2] (4 <= 5)
    • arr[1] <= arr[3] (1 <= 2)
    • arr[2] <= arr[4] (5 <= 6)
    • arr[3] <= arr[5] (2 <= 2)
  • However, the same arr is not K-increasing for k = 1 (because arr[0] > arr[1]) or k = 3 (because arr[0] > arr[3]).

In one operation, you can choose an index i and change arr[i] into any positive integer.

Return the minimum number of operations required to make the array K-increasing for the given k.

Example 1:

Input: arr = [5,4,3,2,1], k = 1
Output: 4
Explanation:
For k = 1, the resultant array has to be non-decreasing.
Some of the K-increasing arrays that can be formed are [5,6,7,8,9], [1,1,1,1,1], [2,2,3,4,4]. All of them require 4 operations.
It is suboptimal to change the array to, for example, [6,7,8,9,10] because it would take 5 operations.
It can be shown that we cannot make the array K-increasing in less than 4 operations.

Example 2:

Input: arr = [4,1,5,2,6,2], k = 2
Output: 0
Explanation:
This is the same example as the one in the problem description.
Here, for every index i where 2 <= i <= 5, arr[i-2] <=arr[i].
Since the given array is already K-increasing, we do not need to perform any operations.

Example 3:

Input: arr = [4,1,5,2,6,2], k = 3
Output: 2
Explanation:
Indices 3 and 5 are the only ones not satisfying arr[i-3] <= arr[i] for 3 <= i <= 5.
One of the ways we can make the array K-increasing is by changing arr[3] to 4 and arr[5] to 5.
The array will now be [4,1,5,4,6,5].
Note that there can be other ways to make the array K-increasing, but none of them require less than 2 operations.

Constraints:

  • 1 <= arr.length <= 105
  • 1 <= arr[i], k <= arr.length

Solution: Longest increasing subsequence

if k = 1, we need to modify the following arrays
1. [a[0], a[1], a[2], …]
if k = 2, we need to modify the following arrays
1. [a[0], a[2], a[4], …]
2. [a[1], a[3], a[5], …]
if k = 3, we need to modify the following arrays
1. [a[0], a[3], a[6], …]
2. [a[1], a[4], a[7], …]
3. [a[2], a[5], a[8], …]

These arrays are independent of each other, we just need to find LIS of it, # ops = len(arr) – LIS(arr).
Ans = sum(len(arri) – LIS(arri)) 1 <= i <= k

Reference: 花花酱 LeetCode 300. Longest Increasing Subsequence

Time complexity: O(k * (n/k)* log(n/k)) = O(n * log(n/k))
Space complexity: O(n/k)

C++

Python3