# Posts tagged as “abs”

Given an integer array nums that does not contain any zeros, find the largest positive integer k such that -k also exists in the array.

Return the positive integer k. If there is no such integer, return -1.

Example 1:

Input: nums = [-1,2,-3,3]
Output: 3
Explanation: 3 is the only valid k we can find in the array.


Example 2:

Input: nums = [-1,10,6,7,-7,1]
Output: 7
Explanation: Both 1 and 7 have their corresponding negative values in the array. 7 has a larger value.


Example 3:

Input: nums = [-10,8,6,7,-2,-3]
Output: -1
Explanation: There is no a single valid k, we return -1.


Constraints:

• 1 <= nums.length <= 1000
• -1000 <= nums[i] <= 1000
• nums[i] != 0

## Solution 1: Hashtable

We can do in one pass by checking whether -x in the hashtable and update ans with abs(x) if so.

Time complexity: O(n)
Space complexity: O(n)

## Solution 2: Sorting

Sort the array by abs(x) in descending order.

[-1,10,6,7,-7,1] becomes = [-1, 1, 6, -7, 7, 10]

Check whether arr[i] = -arr[i-1].

Time complexity: O(nlogn)
Space complexity: O(1)

## Solution 3: Two Pointers

Sort the array.

Let sum = nums[i] + nums[j], sum == 0, we find one pair, if sum < 0, ++i else –j.

Time complexity: O(nlogn)
Space complexity: O(1)

## C++

You are given two positive integer arrays nums1 and nums2, both of length n.

The absolute sum difference of arrays nums1 and nums2 is defined as the sum of |nums1[i] - nums2[i]| for each 0 <= i < n (0-indexed).

You can replace at most one element of nums1 with any other element in nums1 to minimize the absolute sum difference.

Return the minimum absolute sum difference after replacing at most oneelement in the array nums1. Since the answer may be large, return it modulo 109 + 7.

|x| is defined as:

• x if x >= 0, or
• -x if x < 0.

Example 1:

Input: nums1 = [1,7,5], nums2 = [2,3,5]
Output: 3
Explanation: There are two possible optimal solutions:
- Replace the second element with the first: [1,7,5] => [1,1,5], or
- Replace the second element with the third: [1,7,5] => [1,5,5].
Both will yield an absolute sum difference of |1-2| + (|1-3| or |5-3|) + |5-5| = 3.


Example 2:

Input: nums1 = [2,4,6,8,10], nums2 = [2,4,6,8,10]
Output: 0
Explanation: nums1 is equal to nums2 so no replacement is needed. This will result in an
absolute sum difference of 0.


Example 3:

Input: nums1 = [1,10,4,4,2,7], nums2 = [9,3,5,1,7,4]
Output: 20
Explanation: Replace the first element with the second: [1,10,4,4,2,7] => [10,10,4,4,2,7].
This yields an absolute sum difference of |10-9| + |10-3| + |4-5| + |4-1| + |2-7| + |7-4| = 20


Constraints:

• n == nums1.length
• n == nums2.length
• 1 <= n <= 105
• 1 <= nums1[i], nums2[i] <= 105

## Solution: Binary Search

Greedy won’t work, e.g. finding the max diff pair and replace it. Counter example:
nums1 = [7, 5], nums2 = [1, -2]
pair1 = abs(7 – 1) = 6
pair2 = abs(5 – (-2)) = 7
If we replace 5 with 7, we got pair2′ = abs(7 – (-2)) = 9 > 7.

Every pair of numbers can be the candidate, we just need to find the closest number for each nums2[i].

Time complexity: O(nlogn)
Space complexity: O(n)