Press "Enter" to skip to content

Posts tagged as “array”

花花酱 LeetCode 2057. Smallest Index With Equal Value

Given a 0-indexed integer array nums, return the smallest index i of nums such that i mod 10 == nums[i], or -1 if such index does not exist.

x mod y denotes the remainder when x is divided by y.

Example 1:

Input: nums = [0,1,2]
Output: 0
Explanation: 
i=0: 0 mod 10 = 0 == nums[0].
i=1: 1 mod 10 = 1 == nums[1].
i=2: 2 mod 10 = 2 == nums[2].
All indices have i mod 10 == nums[i], so we return the smallest index 0.

Example 2:

Input: nums = [4,3,2,1]
Output: 2
Explanation: 
i=0: 0 mod 10 = 0 != nums[0].
i=1: 1 mod 10 = 1 != nums[1].
i=2: 2 mod 10 = 2 == nums[2].
i=3: 3 mod 10 = 3 != nums[3].
2 is the only index which has i mod 10 == nums[i].

Example 3:

Input: nums = [1,2,3,4,5,6,7,8,9,0]
Output: -1
Explanation: No index satisfies i mod 10 == nums[i].

Example 4:

Input: nums = [2,1,3,5,2]
Output: 1
Explanation: 1 is the only index with i mod 10 == nums[i].

Constraints:

  • 1 <= nums.length <= 100
  • 0 <= nums[i] <= 9

Solution: Brute Force

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2053. Kth Distinct String in an Array

distinct string is a string that is present only once in an array.

Given an array of strings arr, and an integer k, return the kth distinct string present in arr. If there are fewer than k distinct strings, return an empty string "".

Note that the strings are considered in the order in which they appear in the array.

Example 1:

Input: arr = ["d","b","c","b","c","a"], k = 2
Output: "a"
Explanation:
The only distinct strings in arr are "d" and "a".
"d" appears 1st, so it is the 1st distinct string.
"a" appears 2nd, so it is the 2nd distinct string.
Since k == 2, "a" is returned. 

Example 2:

Input: arr = ["aaa","aa","a"], k = 1
Output: "aaa"
Explanation:
All strings in arr are distinct, so the 1st string "aaa" is returned.

Example 3:

Input: arr = ["a","b","a"], k = 3
Output: ""
Explanation:
The only distinct string is "b". Since there are fewer than 3 distinct strings, we return an empty string "".

Constraints:

  • 1 <= k <= arr.length <= 1000
  • 1 <= arr[i].length <= 5
  • arr[i] consists of lowercase English letters.

Solution: Hashtable

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 2022. Convert 1D Array Into 2D Array

You are given a 0-indexed 1-dimensional (1D) integer array original, and two integers, m and n. You are tasked with creating a 2-dimensional (2D) array with m rows and n columns using all the elements from original.

The elements from indices 0 to n - 1 (inclusive) of original should form the first row of the constructed 2D array, the elements from indices n to 2 * n - 1 (inclusive) should form the second row of the constructed 2D array, and so on.

Return an m x n 2D array constructed according to the above procedure, or an empty 2D array if it is impossible.

Example 1:

Input: original = [1,2,3,4], m = 2, n = 2
Output: [[1,2],[3,4]]
Explanation:
The constructed 2D array should contain 2 rows and 2 columns.
The first group of n=2 elements in original, [1,2], becomes the first row in the constructed 2D array.
The second group of n=2 elements in original, [3,4], becomes the second row in the constructed 2D array.

Example 2:

Input: original = [1,2,3], m = 1, n = 3
Output: [[1,2,3]]
Explanation:
The constructed 2D array should contain 1 row and 3 columns.
Put all three elements in original into the first row of the constructed 2D array.

Example 3:

Input: original = [1,2], m = 1, n = 1
Output: []
Explanation:
There are 2 elements in original.
It is impossible to fit 2 elements in a 1x1 2D array, so return an empty 2D array.

Example 4:

Input: original = [3], m = 1, n = 2
Output: []
Explanation:
There is 1 element in original.
It is impossible to make 1 element fill all the spots in a 1x2 2D array, so return an empty 2D array.

Constraints:

  • 1 <= original.length <= 5 * 104
  • 1 <= original[i] <= 105
  • 1 <= m, n <= 4 * 104

Solution: Brute Force

the i-th element in original array will have index (i//n, i % n) in the 2D array.

Time complexity: O(n*m)
Space complexity: O(n*m)

C++

花花酱 LeetCode 2038. Remove Colored Pieces if Both Neighbors are the Same Color

There are n pieces arranged in a line, and each piece is colored either by 'A' or by 'B'. You are given a string colors of length n where colors[i] is the color of the ith piece.

Alice and Bob are playing a game where they take alternating turns removing pieces from the line. In this game, Alice moves first.

  • Alice is only allowed to remove a piece colored 'A' if both its neighbors are also colored 'A'. She is not allowed to remove pieces that are colored 'B'.
  • Bob is only allowed to remove a piece colored 'B' if both its neighbors are also colored 'B'. He is not allowed to remove pieces that are colored 'A'.
  • Alice and Bob cannot remove pieces from the edge of the line.
  • If a player cannot make a move on their turn, that player loses and the other player wins.

Assuming Alice and Bob play optimally, return true if Alice wins, or return false if Bob wins.

Example 1:

Input: colors = "AAABABB"
Output: true
Explanation:
AAABABB -> AABABB
Alice moves first.
She removes the second 'A' from the left since that is the only 'A' whose neighbors are both 'A'.

Now it's Bob's turn.
Bob cannot make a move on his turn since there are no 'B's whose neighbors are both 'B'.
Thus, Alice wins, so return true.

Example 2:

Input: colors = "AA"
Output: false
Explanation:
Alice has her turn first.
There are only two 'A's and both are on the edge of the line, so she cannot move on her turn.
Thus, Bob wins, so return false.

Example 3:

Input: colors = "ABBBBBBBAAA"
Output: false
Explanation:
ABBBBBBBAAA -> ABBBBBBBAA
Alice moves first.
Her only option is to remove the second to last 'A' from the right.

ABBBBBBBAA -> ABBBBBBAA
Next is Bob's turn.
He has many options for which 'B' piece to remove. He can pick any.

On Alice's second turn, she has no more pieces that she can remove.
Thus, Bob wins, so return false.

Constraints:

  • 1 <= colors.length <= 105
  • colors consists of only the letters 'A' and 'B'

Solution: Counting

Count how many ‘AAA’s and ‘BBB’s.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1877. Minimize Maximum Pair Sum in Array

The pair sum of a pair (a,b) is equal to a + b. The maximum pair sum is the largest pair sum in a list of pairs.

  • For example, if we have pairs (1,5)(2,3), and (4,4), the maximum pair sum would be max(1+5, 2+3, 4+4) = max(6, 5, 8) = 8.

Given an array nums of even length n, pair up the elements of nums into n / 2 pairs such that:

  • Each element of nums is in exactly one pair, and
  • The maximum pair sum is minimized.

Return the minimized maximum pair sum after optimally pairing up the elements.

Example 1:

Input: nums = [3,5,2,3]
Output: 7
Explanation: The elements can be paired up into pairs (3,3) and (5,2).
The maximum pair sum is max(3+3, 5+2) = max(6, 7) = 7.

Example 2:

Input: nums = [3,5,4,2,4,6]
Output: 8
Explanation: The elements can be paired up into pairs (3,5), (4,4), and (6,2).
The maximum pair sum is max(3+5, 4+4, 6+2) = max(8, 8, 8) = 8.

Constraints:

  • n == nums.length
  • 2 <= n <= 105
  • n is even.
  • 1 <= nums[i] <= 105

Solution: Greedy

Sort the elements, pair nums[i] with nums[n – i – 1] and find the max pair.

Time complexity: O(nlogn) -> O(n) counting sort.
Space complexity: O(1)

C++