Press "Enter" to skip to content

Posts tagged as “BST”

花花酱 LeetCode Binary Trees 二叉树 SP12

Binary tree is one of the most frequently asked question type during interview.

二叉树是面试中经常会问到的问题。

The candidate needs to understand the recursively defined TreeNode and solve the problem through recursion.

面试者需要理解递归定义的TreeNode数据类型,并且通过使用递归的方式来解决问题。

 










花花酱 LeetCode 938. Range Sum of BST

Problem

Given the root node of a binary search tree, return the sum of values of all nodes with value between L and R (inclusive).

The binary search tree is guaranteed to have unique values.

Example 1:

Input: root = [10,5,15,3,7,null,18], L = 7, R = 15
Output: 32

Example 2:

Input: root = [10,5,15,3,7,13,18,1,null,6], L = 6, R = 10
Output: 23

Note:

  1. The number of nodes in the tree is at most 10000.
  2. The final answer is guaranteed to be less than 2^31.

Solution: In-order traversal

Time complexity: O(n)

Space complexity: O(n)

C++

花花酱 LeetCode 915. Partition Array into Disjoint Intervals

Problem

Given an array A, partition it into two (contiguous) subarrays left and right so that:

  • Every element in left is less than or equal to every element in right.
  • left and right are non-empty.
  • left has the smallest possible size.

Return the length of left after such a partitioning.  It is guaranteed that such a partitioning exists.

Example 1:

Input: [5,0,3,8,6]
Output: 3
Explanation: left = [5,0,3], right = [8,6]

Example 2:

Input: [1,1,1,0,6,12]
Output: 4
Explanation: left = [1,1,1,0], right = [6,12]

Note:

  1. 2 <= A.length <= 30000
  2. 0 <= A[i] <= 10^6
  3. It is guaranteed there is at least one way to partition A as described.

Solution 1: BST

Time complexity: O(nlogn)

Space complexity: O(n)

C++

Solution 2: Greedy

Time complexity: O(n)

Space complexity: O(1)

C++

花花酱 LeetCode 855. Exam Room

Problem

In an exam room, there are N seats in a single row, numbered 0, 1, 2, ..., N-1.

When a student enters the room, they must sit in the seat that maximizes the distance to the closest person.  If there are multiple such seats, they sit in the seat with the lowest number.  (Also, if no one is in the room, then the student sits at seat number 0.)

Return a class ExamRoom(int N) that exposes two functions: ExamRoom.seat() returning an int representing what seat the student sat in, and ExamRoom.leave(int p) representing that the student in seat number p now leaves the room.  It is guaranteed that any calls to ExamRoom.leave(p) have a student sitting in seat p.

Example 1:

Input: ["ExamRoom","seat","seat","seat","seat","leave","seat"], [[10],[],[],[],[],[4],[]]
Output: [null,0,9,4,2,null,5]
Explanation:
ExamRoom(10) -> null
seat() -> 0, no one is in the room, then the student sits at seat number 0.
seat() -> 9, the student sits at the last seat number 9.
seat() -> 4, the student sits at the last seat number 4.
seat() -> 2, the student sits at the last seat number 2.
leave(4) -> null
seat() -> 5, the student​​​​​​​ sits at the last seat number 5.

​​​​Note:

  1. 1 <= N <= 10^9
  2. ExamRoom.seat() and ExamRoom.leave() will be called at most 10^4 times across all test cases.
  3. Calls to ExamRoom.leave(p) are guaranteed to have a student currently sitting in seat number p.

Solution: BST

Use a BST (ordered set) to track the current seatings.

Time Complexity:

init: O(1)

seat: O(P)

leave: O(logP)

Space complexity: O(P)

 

花花酱 LeetCode 701. Insert into a Binary Search Tree

Problem

Given the root node of a binary search tree (BST) and a value to be inserted into the tree, insert the value into the BST. Return the root node of the BST after the insertion. It is guaranteed that the new value does not exist in the original BST.

Note that there may exist multiple valid ways for the insertion, as long as the tree remains a BST after insertion. You can return any of them.

For example,

You can return this binary search tree:

This tree is also valid:

Solution: Recursion

Time complexity: O(logn ~ n)

Space complexity: O(logn ~ n)