Press "Enter" to skip to content

Posts tagged as “DFS”

花花酱 LeetCode 1263. Minimum Moves to Move a Box to Their Target Location

Storekeeper is a game in which the player pushes boxes around in a warehouse trying to get them to target locations.

The game is represented by a grid of size n*m, where each element is a wall, floor, or a box.

Your task is move the box 'B' to the target position 'T' under the following rules:

  • Player is represented by character 'S' and can move up, down, left, right in the grid if it is a floor (empy cell).
  • Floor is represented by character '.' that means free cell to walk.
  • Wall is represented by character '#' that means obstacle  (impossible to walk there). 
  • There is only one box 'B' and one target cell 'T' in the grid.
  • The box can be moved to an adjacent free cell by standing next to the box and then moving in the direction of the box. This is a push.
  • The player cannot walk through the box.

Return the minimum number of pushes to move the box to the target. If there is no way to reach the target, return -1.

Example 1:

Input: grid = [["#","#","#","#","#","#"],
               ["#","T","#","#","#","#"],
               ["#",".",".","B",".","#"],
               ["#",".","#","#",".","#"],
               ["#",".",".",".","S","#"],
               ["#","#","#","#","#","#"]]
Output: 3
Explanation: We return only the number of times the box is pushed.

Example 2:

Input: grid = [["#","#","#","#","#","#"],
               ["#","T","#","#","#","#"],
               ["#",".",".","B",".","#"],
               ["#","#","#","#",".","#"],
               ["#",".",".",".","S","#"],
               ["#","#","#","#","#","#"]]
Output: -1

Example 3:

Input: grid = [["#","#","#","#","#","#"],
               ["#","T",".",".","#","#"],
               ["#",".","#","B",".","#"],
               ["#",".",".",".",".","#"],
               ["#",".",".",".","S","#"],
               ["#","#","#","#","#","#"]]
Output: 5
Explanation:  push the box down, left, left, up and up.

Example 4:

Input: grid = [["#","#","#","#","#","#","#"],
               ["#","S","#",".","B","T","#"],
               ["#","#","#","#","#","#","#"]]
Output: -1

Constraints:

  • 1 <= grid.length <= 20
  • 1 <= grid[i].length <= 20
  • grid contains only characters '.''#',  'S' , 'T', or 'B'.
  • There is only one character 'S''B' and 'T' in the grid.

Solution: BFS + DFS

BFS to search by push steps to find miminal number of pushes. Each time we move from the previous position (initial position or last push position) to a new push position. Use DFS to check that whether that path exist or not.

C++

Solution: A* + BFS

g : history = # of pushes
h: heuristics = Manhattan distance from the current box position to the target position, always <= actual moves.
f = g + h

C++

花花酱 LeetCode 1254. Number of Closed Islands

Given a 2D grid consists of 0s (land) and 1s (water).  An island is a maximal 4-directionally connected group of 0s and a closed island is an island totally (all left, top, right, bottom) surrounded by 1s.

Return the number of closed islands.

Example 1:

Input: grid = [[1,1,1,1,1,1,1,0],[1,0,0,0,0,1,1,0],[1,0,1,0,1,1,1,0],[1,0,0,0,0,1,0,1],[1,1,1,1,1,1,1,0]]
Output: 2
Explanation: 
Islands in gray are closed because they are completely surrounded by water (group of 1s).

Example 2:

Input: grid = [[0,0,1,0,0],[0,1,0,1,0],[0,1,1,1,0]]
Output: 1

Example 3:

Input: grid = [[1,1,1,1,1,1,1],
               [1,0,0,0,0,0,1],
               [1,0,1,1,1,0,1],
               [1,0,1,0,1,0,1],
               [1,0,1,1,1,0,1],
               [1,0,0,0,0,0,1],
               [1,1,1,1,1,1,1]]
Output: 2

Constraints:

  • 1 <= grid.length, grid[0].length <= 100
  • 0 <= grid[i][j] <=1

Solution: DFS/Backtracking

For each connected component, if it can reach the boundary then it’s not a closed island.

Time complexity: O(n*m)
Space complexity: O(n*m)

C++

花花酱 LeetCode 1239. Maximum Length of a Concatenated String with Unique Characters

Given an array of strings arr. String s is a concatenation of a sub-sequence of arr which have unique characters.

Return the maximum possible length of s.

Example 1:

Input: arr = ["un","iq","ue"]
Output: 4
Explanation: All possible concatenations are "","un","iq","ue","uniq" and "ique".
Maximum length is 4.

Example 2:

Input: arr = ["cha","r","act","ers"]
Output: 6
Explanation: Possible solutions are "chaers" and "acters".

Example 3:

Input: arr = ["abcdefghijklmnopqrstuvwxyz"]
Output: 26

Constraints:

  • 1 <= arr.length <= 16
  • 1 <= arr[i].length <= 26
  • arr[i] contains only lower case English letters.

Solution: Combination + Bit

Time complexity: O(2^n)
Space complexity: O(n)

C++

Solution 2: DP

Time complexity: O(2^n)
Space complexity: O(2^n)

C++

花花酱 LeetCode 131. Palindrome Partitioning

Given a string s, partition s such that every substring of the partition is a palindrome.

Return all possible palindrome partitioning of s.

Example:

Input: "aab"
Output:
[
  ["aa","b"],
  ["a","a","b"]
]

Solution1: DP

dp[i] := ans of str[0:i]
dp[j] = { x + str[i:len] for x in dp[i] }, 0 <= i < len

Time complexity: O(2^n)
Space complexity: O(2^n)

C++

Solution 2: DFS

Time complexity: O(2^n)
Space complexity: O(n)

C++

花花酱 LeetCode 130. Surrounded Regions

Given a 2D board containing 'X' and 'O' (the letter O), capture all regions surrounded by 'X'.

A region is captured by flipping all 'O's into 'X's in that surrounded region.

Example:

X X X X
X O O X
X X O X
X O X X

After running your function, the board should be:

X X X X
X X X X
X X X X
X O X X

Explanation:

Surrounded regions shouldn’t be on the border, which means that any 'O' on the border of the board are not flipped to 'X'. Any 'O' that is not on the border and it is not connected to an 'O' on the border will be flipped to 'X'. Two cells are connected if they are adjacent cells connected horizontally or vertically.

Solution: DFS

Time complexity: O(m*n)
Space complexity: O(m*n)

Only starts DFS at border cells of O.

C++