Press "Enter" to skip to content

Posts tagged as “dp”

花花酱 LeetCode 1334. Find the City With the Smallest Number of Neighbors at a Threshold Distance

There are n cities numbered from 0 to n-1. Given the array edges where edges[i] = [fromi, toi, weighti] represents a bidirectional and weighted edge between cities fromi and toi, and given the integer distanceThreshold.

Return the city with the smallest numberof cities that are reachable through some path and whose distance is at most distanceThreshold, If there are multiple such cities, return the city with the greatest number.

Notice that the distance of a path connecting cities i and j is equal to the sum of the edges’ weights along that path.

Example 1:

Input: n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
Output: 3
Explanation: The figure above describes the graph. 
The neighboring cities at a distanceThreshold = 4 for each city are:
City 0 -> [City 1, City 2] 
City 1 -> [City 0, City 2, City 3] 
City 2 -> [City 0, City 1, City 3] 
City 3 -> [City 1, City 2] 
Cities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.

Example 2:

Input: n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
Output: 0
Explanation: The figure above describes the graph. 
The neighboring cities at a distanceThreshold = 2 for each city are:
City 0 -> [City 1] 
City 1 -> [City 0, City 4] 
City 2 -> [City 3, City 4] 
City 3 -> [City 2, City 4]
City 4 -> [City 1, City 2, City 3] 
The city 0 has 1 neighboring city at a distanceThreshold = 2.

Constraints:

  • 2 <= n <= 100
  • 1 <= edges.length <= n * (n - 1) / 2
  • edges[i].length == 3
  • 0 <= fromi < toi < n
  • 1 <= weighti, distanceThreshold <= 10^4
  • All pairs (fromi, toi) are distinct.

Solution1: Floyd-Warshall

All pair shortest path

Time complexity: O(n^3)
Space complexity: O(n^2)

C++

Solution 2: Dijkstra’s Algorithm

Time complexity: O(V * ElogV) / worst O(n^3*logn), best O(n^2*logn)
Space complexity: O(V + E)

C++

花花酱 LeetCode 42. Trapping Rain Water

Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.


The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!

Example:

Input: [0,1,0,2,1,0,1,3,2,1,2,1]
Output: 6

Solution 1: Brute Force

r[i] = min(max(h[0:i+1]), max(h[i:n]))
ans = sum(r[i])

Time complexity: O(n^2)
Space complexity: O(1)

C++

Solution 2: DP

l[i] := max(h[0:i+1])
r[i] := max(h[i:n])
ans = sum(min(l[i], r[i]) – h[i])

Time complexity: O(n)
Space complexity: O(n)

C++

Solution 3: Two Pointers

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1320. Minimum Distance to Type a Word Using Two Fingers

You have a keyboard layout as shown above in the XY plane, where each English uppercase letter is located at some coordinate, for example, the letter A is located at coordinate (0,0), the letter B is located at coordinate (0,1), the letter P is located at coordinate (2,3) and the letter Z is located at coordinate (4,1).

Given the string word, return the minimum total distance to type such string using only two fingers. The distance between coordinates (x1,y1) and (x2,y2) is |x1 – x2| + |y1 – y2|

Note that the initial positions of your two fingers are considered free so don’t count towards your total distance, also your two fingers do not have to start at the first letter or the first two letters.

Example 1:

Input: word = "CAKE"
Output: 3
Explanation: 
Using two fingers, one optimal way to type "CAKE" is: 
Finger 1 on letter 'C' -> cost = 0 
Finger 1 on letter 'A' -> cost = Distance from letter 'C' to letter 'A' = 2 
Finger 2 on letter 'K' -> cost = 0 
Finger 2 on letter 'E' -> cost = Distance from letter 'K' to letter 'E' = 1 
Total distance = 3

Example 2:

Input: word = "HAPPY"
Output: 6
Explanation: 
Using two fingers, one optimal way to type "HAPPY" is:
Finger 1 on letter 'H' -> cost = 0
Finger 1 on letter 'A' -> cost = Distance from letter 'H' to letter 'A' = 2
Finger 2 on letter 'P' -> cost = 0
Finger 2 on letter 'P' -> cost = Distance from letter 'P' to letter 'P' = 0
Finger 1 on letter 'Y' -> cost = Distance from letter 'A' to letter 'Y' = 4
Total distance = 6

Example 3:

Input: word = "NEW"
Output: 3

Example 4:

Input: word = "YEAR"
Output: 7

Constraints:

  • 2 <= word.length <= 300
  • Each word[i] is an English uppercase letter.

Solution: DP

Top down: O(n*27^2)

C++

C++

C++

花花酱 LeetCode 1314. Matrix Block Sum

Given a m * n matrix mat and an integer K, return a matrix answer where each answer[i][j] is the sum of all elements mat[r][c] for i - K <= r <= i + K, j - K <= c <= j + K, and (r, c) is a valid position in the matrix.

Example 1:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 1
Output: [[12,21,16],[27,45,33],[24,39,28]]

Example 2:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 2
Output: [[45,45,45],[45,45,45],[45,45,45]]

Constraints:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n, K <= 100
  • 1 <= mat[i][j] <= 100

Solution: 2D range query

Time complexity: O(m*n)
Space complexity: O(m*n)

C++

花花酱 LeetCode 1312. Minimum Insertion Steps to Make a String Palindrome

Given a string s. In one step you can insert any character at any index of the string.

Return the minimum number of steps to make s palindrome.

Palindrome String is one that reads the same backward as well as forward.

Example 1:

Input: s = "zzazz"
Output: 0
Explanation: The string "zzazz" is already palindrome we don't need any insertions.

Example 2:

Input: s = "mbadm"
Output: 2
Explanation: String can be "mbdadbm" or "mdbabdm".

Example 3:

Input: s = "leetcode"
Output: 5
Explanation: Inserting 5 characters the string becomes "leetcodocteel".

Example 4:

Input: s = "g"
Output: 0

Example 5:

Input: s = "no"
Output: 1

Constraints:

  • 1 <= s.length <= 500
  • All characters of s are lower case English letters.

Solution: DP

dp[i][j] := min chars to insert
dp[j][j] = dp[i-1][j+1] if s[i] == s[j] else min(dp[i+1][j] , dp[i][j-1]) + 1
base case: dp[i][i] = 0
ans: dp[0][n-1]

Time complexity: O(n^2)
Space complexity: O(n^2)

C++