Press "Enter" to skip to content

Posts tagged as “easy”

花花酱 LeetCode1732. Find the Highest Altitude

There is a biker going on a road trip. The road trip consists of n + 1 points at different altitudes. The biker starts his trip on point 0 with altitude equal 0.

You are given an integer array gain of length n where gain[i] is the net gain in altitude between points i​​​​​​ and i + 1 for all (0 <= i < n). Return the highest altitude of a point.

Example 1:

Input: gain = [-5,1,5,0,-7]
Output: 1
Explanation: The altitudes are [0,-5,-4,1,1,-6]. The highest is 1.

Example 2:

Input: gain = [-4,-3,-2,-1,4,3,2]
Output: 0
Explanation: The altitudes are [0,-4,-7,-9,-10,-6,-3,-1]. The highest is 0.

Constraints:

  • n == gain.length
  • 1 <= n <= 100
  • -100 <= gain[i] <= 100

Solution: Running Max

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1725. Number Of Rectangles That Can Form The Largest Square

You are given an array rectangles where rectangles[i] = [li, wi] represents the ith rectangle of length li and width wi.

You can cut the ith rectangle to form a square with a side length of k if both k <= li and k <= wi. For example, if you have a rectangle [4,6], you can cut it to get a square with a side length of at most 4.

Let maxLen be the side length of the largest square you can obtain from any of the given rectangles.

Return the number of rectangles that can make a square with a side length of maxLen.

Example 1:

Input: rectangles = [[5,8],[3,9],[5,12],[16,5]]
Output: 3
Explanation: The largest squares you can get from each rectangle are of lengths [5,3,5,5].
The largest possible square is of length 5, and you can get it out of 3 rectangles.

Example 2:

Input: rectangles = [[2,3],[3,7],[4,3],[3,7]]
Output: 3

Constraints:

  • 1 <= rectangles.length <= 1000
  • rectangles[i].length == 2
  • 1 <= li, wi <= 109
  • li != wi

Solution: Running Max of Shortest Edge

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1720. Decode XORed Array

There is a hidden integer array arr that consists of n non-negative integers.

It was encoded into another integer array encoded of length n - 1, such that encoded[i] = arr[i] XOR arr[i + 1]. For example, if arr = [1,0,2,1], then encoded = [1,2,3].

You are given the encoded array. You are also given an integer first, that is the first element of arr, i.e. arr[0].

Return the original array arr. It can be proved that the answer exists and is unique.

Example 1:

Input: encoded = [1,2,3], first = 1
Output: [1,0,2,1]
Explanation: If arr = [1,0,2,1], then first = 1 and encoded = [1 XOR 0, 0 XOR 2, 2 XOR 1] = [1,2,3]

Example 2:

Input: encoded = [6,2,7,3], first = 4
Output: [4,2,0,7,4]

Constraints:

  • 2 <= n <= 104
  • encoded.length == n - 1
  • 0 <= encoded[i] <= 105
  • 0 <= first <= 105

Solution: XOR

encoded[i] = arr[i] ^ arr[i + 1]
encoded[i] ^ arr[i] = arr[i] ^ arr[i] ^ arr[i + 1]
arr[i+1] = encoded[i]^arr[i]

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1716. Calculate Money in Leetcode Bank

Hercy wants to save money for his first car. He puts money in the Leetcode bank every day.

He starts by putting in $1 on Monday, the first day. Every day from Tuesday to Sunday, he will put in $1 more than the day before. On every subsequent Monday, he will put in $1 more than the previous Monday.

Given n, return the total amount of money he will have in the Leetcode bank at the end of the nth day.

Example 1:

Input: n = 4
Output: 10
Explanation: After the 4th day, the total is 1 + 2 + 3 + 4 = 10.

Example 2:

Input: n = 10
Output: 37
Explanation: After the 10th day, the total is (1 + 2 + 3 + 4 + 5 + 6 + 7) + (2 + 3 + 4) = 37. Notice that on the 2nd Monday, Hercy only puts in $2.

Example 3:

Input: n = 20
Output: 96
Explanation: After the 20th day, the total is (1 + 2 + 3 + 4 + 5 + 6 + 7) + (2 + 3 + 4 + 5 + 6 + 7 + 8) + (3 + 4 + 5 + 6 + 7 + 8) = 96.

Constraints:

  • 1 <= n <= 1000

Solution 1: Simulation

Increase the amount by 1 everyday, the decrease 6 after every sunday.

Time complexity: O(n)
Space complexity: O(1)

C++

Could also be solved using Math in O(1)

花花酱 LeetCode 1710. Maximum Units on a Truck

You are assigned to put some amount of boxes onto one truck. You are given a 2D array boxTypes, where boxTypes[i] = [numberOfBoxesi, numberOfUnitsPerBoxi]:

  • numberOfBoxesi is the number of boxes of type i.
  • numberOfUnitsPerBoxiis the number of units in each box of the type i.

You are also given an integer truckSize, which is the maximum number of boxes that can be put on the truck. You can choose any boxes to put on the truck as long as the number of boxes does not exceed truckSize.

Return the maximum total number of units that can be put on the truck.

Example 1:

Input: boxTypes = [[1,3],[2,2],[3,1]], truckSize = 4
Output: 8
Explanation: There are:
- 1 box of the first type that contains 3 units.
- 2 boxes of the second type that contain 2 units each.
- 3 boxes of the third type that contain 1 unit each.
You can take all the boxes of the first and second types, and one box of the third type.
The total number of units will be = (1 * 3) + (2 * 2) + (1 * 1) = 8.

Example 2:

Input: boxTypes = [[5,10],[2,5],[4,7],[3,9]], truckSize = 10
Output: 91

Constraints:

  • 1 <= boxTypes.length <= 1000
  • 1 <= numberOfBoxesi, numberOfUnitsPerBoxi <= 1000
  • 1 <= truckSize <= 106

Solution: Greedy

Sort by unit in descending order.

Time complexity: O(nlogn)
Space complexity: O(1)

C++