Press "Enter" to skip to content

Posts tagged as “easy”

花花酱 LeetCode 566. Reshape the Matrix

Problem

In MATLAB, there is a very useful function called ‘reshape’, which can reshape a matrix into a new one with different size but keep its original data.

You’re given a matrix represented by a two-dimensional array, and two positive integers r and c representing the row number and column number of the wanted reshaped matrix, respectively.

The reshaped matrix need to be filled with all the elements of the original matrix in the same row-traversing order as they were.

If the ‘reshape’ operation with given parameters is possible and legal, output the new reshaped matrix; Otherwise, output the original matrix.

Example 1:

Input: 
nums = 
[[1,2],
 [3,4]]
r = 1, c = 4
Output: 
[[1,2,3,4]]
Explanation:
The row-traversing of nums is [1,2,3,4]. The new reshaped matrix is a 1 * 4 matrix, fill it row by row by using the previous list.

Example 2:

Input: 
nums = 
[[1,2],
 [3,4]]
r = 2, c = 4
Output: 
[[1,2],
 [3,4]]
Explanation:
There is no way to reshape a 2 * 2 matrix to a 2 * 4 matrix. So output the original matrix.

Note:

  1. The height and width of the given matrix is in range [1, 100].
  2. The given r and c are all positive.

Solution1: Brute Force

Time complexity: O(mn)

Space complexity: O(mn)

 

花花酱 LeetCode 455. Assign Cookies

Problem

Assume you are an awesome parent and want to give your children some cookies. But, you should give each child at most one cookie. Each child i has a greed factor gi, which is the minimum size of a cookie that the child will be content with; and each cookie j has a size sj. If sj >= gi, we can assign the cookie j to the child i, and the child i will be content. Your goal is to maximize the number of your content children and output the maximum number.

Note:
You may assume the greed factor is always positive.
You cannot assign more than one cookie to one child.

Example 1:

Input: [1,2,3], [1,1]

Output: 1

Explanation: You have 3 children and 2 cookies. The greed factors of 3 children are 1, 2, 3. 
And even though you have 2 cookies, since their size is both 1, you could only make the child whose greed factor is 1 content.
You need to output 1.

Example 2:

Input: [1,2], [1,2,3]

Output: 2

Explanation: You have 2 children and 3 cookies. The greed factors of 2 children are 1, 2. 
You have 3 cookies and their sizes are big enough to gratify all of the children, 
You need to output 2.

Solution: Greedy + Two Pointers

Time complexity: O(mlogm + nlogn)

Space complexity: O(1)

 

花花酱 LeetCode 888. Uncommon Words from Two Sentences

Problem

We are given two sentences A and B.  (A sentence is a string of space separated words.  Each word consists only of lowercase letters.)

A word is uncommon if it appears exactly once in one of the sentences, and does not appear in the other sentence.

Return a list of all uncommon words.

You may return the list in any order.

Example 1:

Input: A = "this apple is sweet", B = "this apple is sour"
Output: ["sweet","sour"]

Example 2:

Input: A = "apple apple", B = "banana"
Output: ["banana"]

Note:

  1. 0 <= A.length <= 200
  2. 0 <= B.length <= 200
  3. A and B both contain only spaces and lowercase letters.

Solution: HashTable

Time complexity: O(m+n)

Space complexity: O(m+n)

C++

 

花花酱 LeetCode 707. Design Linked List

Problem

Design your implementation of the linked list. You can choose to use the singly linked list or the doubly linked list. A node in a singly linked list should have two attributes: val and nextval is the value of the current node, and next is a pointer/reference to the next node. If you want to use the doubly linked list, you will need one more attribute prev to indicate the previous node in the linked list. Assume all nodes in the linked list are 0-indexed.

Implement these functions in your linked list class:

  • get(index) : Get the value of the index-th node in the linked list. If the index is invalid, return -1.
  • addAtHead(val) : Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.
  • addAtTail(val) : Append a node of value val to the last element of the linked list.
  • addAtIndex(index, val) : Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted.
  • deleteAtIndex(index) : Delete the index-th node in the linked list, if the index is valid.

Example:

Note:

  • All values will be in the range of [1, 1000].
  • The number of operations will be in the range of [1, 1000].
  • Please do not use the built-in LinkedList library.




Solution: Single linked list

Keep tracking head and tail of the list.

Time Complexity:

addAtHead, addAtTail O(1)

addAtIndex O(index)

deleteAtIndex O(index)

Space complexity: O(1)

C++

Tracking head/tail and size of the list.

v2

Python3

Java

 

花花酱 LeetCode 189. Rotate Array

Problem

Given an array, rotate the array to the right by k steps, where k is non-negative.

Example 1:

Input: [1,2,3,4,5,6,7] and k = 3 
Output: [5,6,7,1,2,3,4]
Explanation: rotate 1 steps to the right: [7,1,2,3,4,5,6] rotate 2 steps to the right: [6,7,1,2,3,4,5] 
rotate 3 steps to the right: [5,6,7,1,2,3,4]

Example 2:

Input:[-1,-100,3,99] and k = 2 
Output: [3,99,-1,-100] 
Explanation: rotate 1 steps to the right: [99,-1,-100,3] rotate 2 steps to the right: [3,99,-1,-100]

Note:

  • Try to come up as many solutions as you can, there are at least 3 different ways to solve this problem.
  • Could you do it in-place with O(1) extra space?

Solution 1: Simulate rotation with three reverses.

If k >= n, rotating k times has the same effect as rotating k % n times.

[1,2,3,4,5,6,7], K = 3

[5,6,7,1,2,3,4]

We can simulate the rotation with three reverses.

  1. reverse the whole array O(n) [7,6,5,4,3,2,1]
  2. reverse the left part 0 ~ k – 1 O(k) [5,6,7,4,3,2,1]
  3. reverse the right part k ~ n – 1 O(n-k) [5,6,7,1,2,3,4]

Time complexity: O(n)

Space complexity: O(1) in-place

C++