# Posts tagged as “events”

There is a party where n friends numbered from 0 to n - 1 are attending. There is an infinite number of chairs in this party that are numbered from 0 to infinity. When a friend arrives at the party, they sit on the unoccupied chair with the smallest number.

• For example, if chairs 01, and 5 are occupied when a friend comes, they will sit on chair number 2.

When a friend leaves the party, their chair becomes unoccupied at the moment they leave. If another friend arrives at that same moment, they can sit in that chair.

You are given a 0-indexed 2D integer array times where times[i] = [arrivali, leavingi], indicating the arrival and leaving times of the ith friend respectively, and an integer targetFriend. All arrival times are distinct.

Return the chair number that the friend numbered targetFriend will sit on.

Example 1:

Input: times = [[1,4],[2,3],[4,6]], targetFriend = 1
Output: 1
Explanation:
- Friend 0 arrives at time 1 and sits on chair 0.
- Friend 1 arrives at time 2 and sits on chair 1.
- Friend 1 leaves at time 3 and chair 1 becomes empty.
- Friend 0 leaves at time 4 and chair 0 becomes empty.
- Friend 2 arrives at time 4 and sits on chair 0.
Since friend 1 sat on chair 1, we return 1.


Example 2:

Input: times = [[3,10],[1,5],[2,6]], targetFriend = 0
Output: 2
Explanation:
- Friend 1 arrives at time 1 and sits on chair 0.
- Friend 2 arrives at time 2 and sits on chair 1.
- Friend 0 arrives at time 3 and sits on chair 2.
- Friend 1 leaves at time 5 and chair 0 becomes empty.
- Friend 2 leaves at time 6 and chair 1 becomes empty.
- Friend 0 leaves at time 10 and chair 2 becomes empty.
Since friend 0 sat on chair 2, we return 2.


Constraints:

• n == times.length
• 2 <= n <= 104
• times[i].length == 2
• 1 <= arrivali < leavingi <= 105
• 0 <= targetFriend <= n - 1
• Each arrivali time is distinct.

## Solution: Treeset + Simulation

Use a treeset to track available chairs, sort events by time.
note: process leaving events first.

Time complexity: O(nlogn)
Space complexity: O(n)

## C++

You are given a 0-indexed 2D integer array of events where events[i] = [startTimei, endTimei, valuei]. The ith event starts at startTimeiand ends at endTimei, and if you attend this event, you will receive a value of valuei. You can choose at most two non-overlapping events to attend such that the sum of their values is maximized.

Return this maximum sum.

Note that the start time and end time is inclusive: that is, you cannot attend two events where one of them starts and the other ends at the same time. More specifically, if you attend an event with end time t, the next event must start at or after t + 1.

Example 1:

Input: events = [[1,3,2],[4,5,2],[2,4,3]]
Output: 4
Explanation: Choose the green events, 0 and 1 for a sum of 2 + 2 = 4.


Example 2:

Input: events = [[1,3,2],[4,5,2],[1,5,5]]
Output: 5
Explanation: Choose event 2 for a sum of 5.


Example 3:

Input: events = [[1,5,3],[1,5,1],[6,6,5]]
Output: 8
Explanation: Choose events 0 and 2 for a sum of 3 + 5 = 8.

Constraints:

• 2 <= events.length <= 105
• events[i].length == 3
• 1 <= startTimei <= endTimei <= 109
• 1 <= valuei <= 106

## Solution: Sort + Heap

Sort events by start time, process them from left to right.

Use a min heap to store the events processed so far, a variable cur to track the max value of a non-overlapping event.

For a given event, pop all non-overlapping events whose end time is smaller than its start time and update cur.

ans = max(val + cur)

Time complexity: O(nlogn)
Space complexity: O(n)