Press "Enter" to skip to content

Posts tagged as “game”

花花酱 LeetCode 1510. Stone Game IV

Alice and Bob take turns playing a game, with Alice starting first.

Initially, there are n stones in a pile.  On each player’s turn, that player makes a move consisting of removing any non-zero square number of stones in the pile.

Also, if a player cannot make a move, he/she loses the game.

Given a positive integer n. Return True if and only if Alice wins the game otherwise return False, assuming both players play optimally.

Example 1:

Input: n = 1
Output: true
Explanation: Alice can remove 1 stone winning the game because Bob doesn't have any moves.

Example 2:

Input: n = 2
Output: false
Explanation: Alice can only remove 1 stone, after that Bob removes the last one winning the game (2 -> 1 -> 0).

Example 3:

Input: n = 4
Output: true
Explanation: n is already a perfect square, Alice can win with one move, removing 4 stones (4 -> 0).

Example 4:

Input: n = 7
Output: false
Explanation: Alice can't win the game if Bob plays optimally.
If Alice starts removing 4 stones, Bob will remove 1 stone then Alice should remove only 1 stone and finally Bob removes the last one (7 -> 3 -> 2 -> 1 -> 0). 
If Alice starts removing 1 stone, Bob will remove 4 stones then Alice only can remove 1 stone and finally Bob removes the last one (7 -> 6 -> 2 -> 1 -> 0).

Example 5:

Input: n = 17
Output: false
Explanation: Alice can't win the game if Bob plays optimally.

Constraints:

  • 1 <= n <= 10^5

Solution: Recursion w/ Memoization / DP

Let win(n) denotes whether the current play will win or not.
Try all possible square numbers and see whether the other player will lose or not.
win(n) = any(win(n – i*i) == False) ? True : False
base case: win(0) = False

Time complexity: O(nsqrt(n))
Space complexity: O(n)

C++

Java

Python3

花花酱 LeetCode 1406. Stone Game III

Alice and Bob continue their games with piles of stones. There are several stones arranged in a row, and each stone has an associated value which is an integer given in the array stoneValue.

Alice and Bob take turns, with Alice starting first. On each player’s turn, that player can take 1, 2 or 3 stones from the first remaining stones in the row.

The score of each player is the sum of values of the stones taken. The score of each player is 0 initially.

The objective of the game is to end with the highest score, and the winner is the player with the highest score and there could be a tie. The game continues until all the stones have been taken.

Assume Alice and Bob play optimally.

Return “Alice” if Alice will win, “Bob” if Bob will win or “Tie” if they end the game with the same score.

Example 1:

Input: values = [1,2,3,7]
Output: "Bob"
Explanation: Alice will always lose. Her best move will be to take three piles and the score become 6. Now the score of Bob is 7 and Bob wins.

Example 2:

Input: values = [1,2,3,-9]
Output: "Alice"
Explanation: Alice must choose all the three piles at the first move to win and leave Bob with negative score.
If Alice chooses one pile her score will be 1 and the next move Bob's score becomes 5. The next move Alice will take the pile with value = -9 and lose.
If Alice chooses two piles her score will be 3 and the next move Bob's score becomes 3. The next move Alice will take the pile with value = -9 and also lose.
Remember that both play optimally so here Alice will choose the scenario that makes her win.

Example 3:

Input: values = [1,2,3,6]
Output: "Tie"
Explanation: Alice cannot win this game. She can end the game in a draw if she decided to choose all the first three piles, otherwise she will lose.

Example 4:

Input: values = [1,2,3,-1,-2,-3,7]
Output: "Alice"

Example 5:

Input: values = [-1,-2,-3]
Output: "Tie"

Constraints:

  • 1 <= values.length <= 50000
  • -1000 <= values[i] <= 1000

Solution: DP with memorization

dp(i) := max relative score the current player can get if start the game from the i-th stone.

dp(i) = max(sum(values[i:i+k]) – dp(i + k)) 1 <= k <= 3

Time complexity: O(n)
Space complexity: O(n)

C++

Python3

Related Problems

花花酱 LeetCode 375. Guess Number Higher or Lower II

We are playing the Guess Game. The game is as follows:

I pick a number from 1 to n. You have to guess which number I picked.

Every time you guess wrong, I’ll tell you whether the number I picked is higher or lower.

However, when you guess a particular number x, and you guess wrong, you pay $x. You win the game when you guess the number I picked.

Example:

n = 10, I pick 8.

First round:  You guess 5, I tell you that it's higher. You pay $5.
Second round: You guess 7, I tell you that it's higher. You pay $7.
Third round:  You guess 9, I tell you that it's lower. You pay $9.

Game over. 8 is the number I picked.

You end up paying $5 + $7 + $9 = $21.

Given a particular n ≥ 1, find out how much money you need to have to guarantee a win.

Solution: DP

Use dp[l][r] to denote the min money to win the game if the current guessing range is [l, r], to guarantee a win, we need to try all possible numbers in [l, r]. Let say we guess K, we need to pay K and the game might continue if we were wrong. cost will be K + max(dp(l, K-1), dp(K+1, r)), we need max to cover all possible cases. Among all Ks, we picked the cheapest one.

dp[l][r] = min(k + max(dp[l][k – 1], dp[k+1][r]), for l <= k <= r.

Time complexity: O(n^3)
Space complexity: O(n^2)

C++

Python3

花花酱 LeetCode 1275. Find Winner on a Tic Tac Toe Game

Tic-tac-toe is played by two players A and B on a 3 x 3 grid.

Here are the rules of Tic-Tac-Toe:

  • Players take turns placing characters into empty squares (” “).
  • The first player A always places “X” characters, while the second player B always places “O” characters.
  • “X” and “O” characters are always placed into empty squares, never on filled ones.
  • The game ends when there are 3 of the same (non-empty) character filling any row, column, or diagonal.
  • The game also ends if all squares are non-empty.
  • No more moves can be played if the game is over.

Given an array moves where each element is another array of size 2 corresponding to the row and column of the grid where they mark their respective character in the order in which A and B play.

Return the winner of the game if it exists (A or B), in case the game ends in a draw return “Draw”, if there are still movements to play return “Pending”.

You can assume that moves is valid (It follows the rules of Tic-Tac-Toe), the grid is initially empty and A will play first.

Example 1:

Input: moves = [[0,0],[2,0],[1,1],[2,1],[2,2]]
Output: "A"
Explanation: "A" wins, he always plays first.
"X  "    "X  "    "X  "    "X  "    "X  "
"   " -> "   " -> " X " -> " X " -> " X "
"   "    "O  "    "O  "    "OO "    "OOX"

Example 2:

Input: moves = [[0,0],[1,1],[0,1],[0,2],[1,0],[2,0]]
Output: "B"
Explanation: "B" wins.
"X  "    "X  "    "XX "    "XXO"    "XXO"    "XXO"
"   " -> " O " -> " O " -> " O " -> "XO " -> "XO " 
"   "    "   "    "   "    "   "    "   "    "O  "

Example 3:

Input: moves = [[0,0],[1,1],[2,0],[1,0],[1,2],[2,1],[0,1],[0,2],[2,2]]
Output: "Draw"
Explanation: The game ends in a draw since there are no moves to make.
"XXO"
"OOX"
"XOX"

Example 4:

Input: moves = [[0,0],[1,1]]
Output: "Pending"
Explanation: The game has not finished yet.
"X  "
" O "
"   "

Constraints:

  • 1 <= moves.length <= 9
  • moves[i].length == 2
  • 0 <= moves[i][j] <= 2
  • There are no repeated elements on moves.
  • moves follow the rules of tic tac toe.

Solution: Simulation

Time complexity: O(1)
Space complexity: O(1)

C++

花花酱 LeetCode 1140. Stone Game II

Alex and Lee continue their games with piles of stones.  There are a number of piles arranged in a row, and each pile has a positive integer number of stones piles[i].  The objective of the game is to end with the most stones. 

Alex and Lee take turns, with Alex starting first.  Initially, M = 1.

On each player’s turn, that player can take all the stones in the first X remaining piles, where 1 <= X <= 2M.  Then, we set M = max(M, X).

The game continues until all the stones have been taken.

Assuming Alex and Lee play optimally, return the maximum number of stones Alex can get.

Example 1:

Input: piles = [2,7,9,4,4]
Output: 10
Explanation:  If Alex takes one pile at the beginning, Lee takes two piles, then Alex takes 2 piles again. Alex can get 2 + 4 + 4 = 10 piles in total. If Alex takes two piles at the beginning, then Lee can take all three piles left. In this case, Alex get 2 + 7 = 9 piles in total. So we return 10 since it's larger. 

Constraints:

  • 1 <= piles.length <= 100
  • 1 <= piles[i] <= 10 ^ 4

Solution: Recursion + Memoization

def solve(s, m) = max diff score between two players starting from s for the given M.

cache[s][M] = max{sum(piles[s:s+x]) – solve(s+x, max(x, M)}, 1 <= x <= 2*M, s + x <= n

Time complexity: O(n^3)
Space complexity: O(n^2)

C++