Press "Enter" to skip to content

Posts tagged as “medium”

่Šฑ่Šฑ้…ฑ LeetCode 1838. Frequency of the Most Frequent Element

The frequency of an element is the number of times it occurs in an array.

You are given an integer array nums and an integer k. In one operation, you can choose an index of nums and increment the element at that index by 1.

Return the maximum possible frequency of an element after performing at most k operations.

Example 1:

Input: nums = [1,2,4], k = 5
Output: 3
Explanation: Increment the first element three times and the second element two times to make nums = [4,4,4].
4 has a frequency of 3.

Example 2:

Input: nums = [1,4,8,13], k = 5
Output: 2
Explanation: There are multiple optimal solutions:
- Increment the first element three times to make nums = [4,4,8,13]. 4 has a frequency of 2.
- Increment the second element four times to make nums = [1,8,8,13]. 8 has a frequency of 2.
- Increment the third element five times to make nums = [1,4,13,13]. 13 has a frequency of 2.

Example 3:

Input: nums = [3,9,6], k = 2
Output: 1

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105
  • 1 <= k <= 105

Solution: Sliding Window

Sort the elements, maintain a window such that it takes at most k ops to make the all the elements equal to nums[i].

Time complexity: O(nlogn)
Space complexity: O(1)

C++

่Šฑ่Šฑ้…ฑ LeetCode 1834. Single-Threaded CPU

You are given nโ€‹โ€‹โ€‹โ€‹โ€‹โ€‹ tasks labeled from 0 to n - 1 represented by a 2D integer array tasks, where tasks[i] = [enqueueTimei, processingTimei] means that the iโ€‹โ€‹โ€‹โ€‹โ€‹โ€‹thโ€‹โ€‹โ€‹โ€‹ task will be available to process at enqueueTimei and will take processingTimeito finish processing.

You have a single-threaded CPU that can process at most one task at a time and will act in the following way:

  • If the CPU is idle and there are no available tasks to process, the CPU remains idle.
  • If the CPU is idle and there are available tasks, the CPU will choose the one with the shortest processing time. If multiple tasks have the same shortest processing time, it will choose the task with the smallest index.
  • Once a task is started, the CPU will process the entire task without stopping.
  • The CPU can finish a task then start a new one instantly.

Return the order in which the CPU will process the tasks.

Example 1:

Input: tasks = [[1,2],[2,4],[3,2],[4,1]]
Output: [0,2,3,1]
Explanation: The events go as follows: 
- At time = 1, task 0 is available to process. Available tasks = {0}.
- Also at time = 1, the idle CPU starts processing task 0. Available tasks = {}.
- At time = 2, task 1 is available to process. Available tasks = {1}.
- At time = 3, task 2 is available to process. Available tasks = {1, 2}.
- Also at time = 3, the CPU finishes task 0 and starts processing task 2 as it is the shortest. Available tasks = {1}.
- At time = 4, task 3 is available to process. Available tasks = {1, 3}.
- At time = 5, the CPU finishes task 2 and starts processing task 3 as it is the shortest. Available tasks = {1}.
- At time = 6, the CPU finishes task 3 and starts processing task 1. Available tasks = {}.
- At time = 10, the CPU finishes task 1 and becomes idle.

Example 2:

Input: tasks = [[7,10],[7,12],[7,5],[7,4],[7,2]]
Output: [4,3,2,0,1]
Explanation: The events go as follows:
- At time = 7, all the tasks become available. Available tasks = {0,1,2,3,4}.
- Also at time = 7, the idle CPU starts processing task 4. Available tasks = {0,1,2,3}.
- At time = 9, the CPU finishes task 4 and starts processing task 3. Available tasks = {0,1,2}.
- At time = 13, the CPU finishes task 3 and starts processing task 2. Available tasks = {0,1}.
- At time = 18, the CPU finishes task 2 and starts processing task 0. Available tasks = {1}.
- At time = 28, the CPU finishes task 0 and starts processing task 1. Available tasks = {}.
- At time = 40, the CPU finishes task 1 and becomes idle.

Constraints:

  • tasks.length == n
  • 1 <= n <= 105
  • 1 <= enqueueTimei, processingTimei <= 109

Solution: Simulation w/ Sort + PQ

Time complexity: O(nlogn)
Space complexity: O(n)

C++

่Šฑ่Šฑ้…ฑ LeetCode 1833. Maximum Ice Cream Bars

It is a sweltering summer day, and a boy wants to buy some ice cream bars.

At the store, there are n ice cream bars. You are given an array costs of length n, where costs[i] is the price of the ith ice cream bar in coins. The boy initially has coins coins to spend, and he wants to buy as many ice cream bars as possible. 

Return the maximum number of ice cream bars the boy can buy with coins coins.

Note: The boy can buy the ice cream bars in any order.

Example 1:

Input: costs = [1,3,2,4,1], coins = 7
Output: 4
Explanation: The boy can buy ice cream bars at indices 0,1,2,4 for a total price of 1 + 3 + 2 + 1 = 7.

Example 2:

Input: costs = [10,6,8,7,7,8], coins = 5
Output: 0
Explanation: The boy cannot afford any of the ice cream bars.

Example 3:

Input: costs = [1,6,3,1,2,5], coins = 20
Output: 6
Explanation: The boy can buy all the ice cream bars for a total price of 1 + 6 + 3 + 1 + 2 + 5 = 18.

Constraints:

  • costs.length == n
  • 1 <= n <= 105
  • 1 <= costs[i] <= 105
  • 1 <= coins <= 108

Solution: Greedy

Sort by price in ascending order, buy from the lowest price to the highest price.

Time complexity: O(nlogn)
Space complexity: O(1)

C++

่Šฑ่Šฑ้…ฑ LeetCode 1829. Maximum XOR for Each Query

You are given a sorted array nums of n non-negative integers and an integer maximumBit. You want to perform the following query n times:

  1. Find a non-negative integer k < 2maximumBit such that nums[0] XOR nums[1] XOR ... XOR nums[nums.length-1] XOR k is maximizedk is the answer to the ith query.
  2. Remove the last element from the current array nums.

Return an array answer, where answer[i] is the answer to the ith query.

Example 1:

Input: nums = [0,1,1,3], maximumBit = 2
Output: [0,3,2,3]
Explanation: The queries are answered as follows:
1st query: nums = [0,1,1,3], k = 0 since 0 XOR 1 XOR 1 XOR 3 XOR 0 = 3.
2nd query: nums = [0,1,1], k = 3 since 0 XOR 1 XOR 1 XOR 3 = 3.
3rd query: nums = [0,1], k = 2 since 0 XOR 1 XOR 2 = 3.
4th query: nums = [0], k = 3 since 0 XOR 3 = 3.

Example 2:

Input: nums = [2,3,4,7], maximumBit = 3
Output: [5,2,6,5]
Explanation: The queries are answered as follows:
1st query: nums = [2,3,4,7], k = 5 since 2 XOR 3 XOR 4 XOR 7 XOR 5 = 7.
2nd query: nums = [2,3,4], k = 2 since 2 XOR 3 XOR 4 XOR 2 = 7.
3rd query: nums = [2,3], k = 6 since 2 XOR 3 XOR 6 = 7.
4th query: nums = [2], k = 5 since 2 XOR 5 = 7.

Example 3:

Input: nums = [0,1,2,2,5,7], maximumBit = 3
Output: [4,3,6,4,6,7]

Constraints:

  • nums.length == n
  • 1 <= n <= 105
  • 1 <= maximumBit <= 20
  • 0 <= nums[i] < 2maximumBit
  • numsโ€‹โ€‹โ€‹ is sorted in ascending order.

Solution: Prefix XOR

Compute s = nums[0] ^ nums[1] ^ … nums[n-1] first

to remove nums[i], we just need to do s ^= nums[i]

We can always maximize the xor of s and k to (2^maxbit – 1)
k = (2 ^ maxbit – 1) ^ s

Time complexity: O(n)
Space complexity: O(1)

C++

่Šฑ่Šฑ้…ฑ LeetCode 1828. Queries on Number of Points Inside a Circle

You are given an array points where points[i] = [xi, yi] is the coordinates of the ith point on a 2D plane. Multiple points can have the same coordinates.

You are also given an array queries where queries[j] = [xj, yj, rj] describes a circle centered at (xj, yj) with a radius of rj.

For each query queries[j], compute the number of points inside the jth circle. Points on the border of the circle are considered inside.

Return an array answer, where answer[j] is the answer to the jth query.

Example 1:

Input: points = [[1,3],[3,3],[5,3],[2,2]], queries = [[2,3,1],[4,3,1],[1,1,2]]
Output: [3,2,2]
Explanation: The points and circles are shown above.
queries[0] is the green circle, queries[1] is the red circle, and queries[2] is the blue circle.

Example 2:

Input: points = [[1,1],[2,2],[3,3],[4,4],[5,5]], queries = [[1,2,2],[2,2,2],[4,3,2],[4,3,3]]
Output: [2,3,2,4]
Explanation: The points and circles are shown above.
queries[0] is green, queries[1] is red, queries[2] is blue, and queries[3] is purple.

Constraints:

  • 1 <= points.length <= 500
  • points[i].length == 2
  • 0 <= xโ€‹โ€‹โ€‹โ€‹โ€‹โ€‹i, yโ€‹โ€‹โ€‹โ€‹โ€‹โ€‹i <= 500
  • 1 <= queries.length <= 500
  • queries[j].length == 3
  • 0 <= xj, yj <= 500
  • 1 <= rj <= 500
  • All coordinates are integers.

Solution: Brute Force

Time complexity: O(P * Q)
Space complexity: O(1)

C++