Press "Enter" to skip to content

Posts tagged as “query”

花花酱 LeetCode 1476. Subrectangle Queries

Implement the class SubrectangleQueries which receives a rows x cols rectangle as a matrix of integers in the constructor and supports two methods:

1. updateSubrectangle(int row1, int col1, int row2, int col2, int newValue)

  • Updates all values with newValue in the subrectangle whose upper left coordinate is (row1,col1) and bottom right coordinate is (row2,col2).

2. getValue(int row, int col)

  • Returns the current value of the coordinate (row,col) from the rectangle.

Example 1:

Input
["SubrectangleQueries","getValue","updateSubrectangle","getValue","getValue","updateSubrectangle","getValue","getValue"]
[[[[1,2,1],[4,3,4],[3,2,1],[1,1,1]]],[0,2],[0,0,3,2,5],[0,2],[3,1],[3,0,3,2,10],[3,1],[0,2]]
Output

[null,1,null,5,5,null,10,5]

Explanation SubrectangleQueries subrectangleQueries = new SubrectangleQueries([[1,2,1],[4,3,4],[3,2,1],[1,1,1]]); // The initial rectangle (4×3) looks like: // 1 2 1 // 4 3 4 // 3 2 1 // 1 1 1 subrectangleQueries.getValue(0, 2); // return 1 subrectangleQueries.updateSubrectangle(0, 0, 3, 2, 5); // After this update the rectangle looks like: // 5 5 5 // 5 5 5 // 5 5 5 // 5 5 5 subrectangleQueries.getValue(0, 2); // return 5 subrectangleQueries.getValue(3, 1); // return 5 subrectangleQueries.updateSubrectangle(3, 0, 3, 2, 10); // After this update the rectangle looks like: // 5 5 5 // 5 5 5 // 5 5 5 // 10 10 10 subrectangleQueries.getValue(3, 1); // return 10 subrectangleQueries.getValue(0, 2); // return 5

Example 2:

Input
["SubrectangleQueries","getValue","updateSubrectangle","getValue","getValue","updateSubrectangle","getValue"]
[[[[1,1,1],[2,2,2],[3,3,3]]],[0,0],[0,0,2,2,100],[0,0],[2,2],[1,1,2,2,20],[2,2]]
Output

[null,1,null,100,100,null,20]

Explanation SubrectangleQueries subrectangleQueries = new SubrectangleQueries([[1,1,1],[2,2,2],[3,3,3]]); subrectangleQueries.getValue(0, 0); // return 1 subrectangleQueries.updateSubrectangle(0, 0, 2, 2, 100); subrectangleQueries.getValue(0, 0); // return 100 subrectangleQueries.getValue(2, 2); // return 100 subrectangleQueries.updateSubrectangle(1, 1, 2, 2, 20); subrectangleQueries.getValue(2, 2); // return 20

Constraints:

  • There will be at most 500 operations considering both methods: updateSubrectangle and getValue.
  • 1 <= rows, cols <= 100
  • rows == rectangle.length
  • cols == rectangle[i].length
  • 0 <= row1 <= row2 < rows
  • 0 <= col1 <= col2 < cols
  • 1 <= newValue, rectangle[i][j] <= 10^9
  • 0 <= row < rows
  • 0 <= col < cols

Solution 1: Simulation

Update the matrix values.

Time complexity:
Update: O(m*n), where m*n is the area of the sub-rectangle.
Query: O(1)

Space complexity: O(rows*cols)

C++

Solution 2: Geometry

For each update remember the region and value.

For each query, find the newest updates that covers the query point. If not found, return the original value in the matrix.

Time complexity:
Update: O(1)
Query: O(|U|), where |U| is the number of updates so far.

Space complexity: O(|U|)

C++

花花酱 LeetCode 1314. Matrix Block Sum

Given a m * n matrix mat and an integer K, return a matrix answer where each answer[i][j] is the sum of all elements mat[r][c] for i - K <= r <= i + K, j - K <= c <= j + K, and (r, c) is a valid position in the matrix.

Example 1:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 1
Output: [[12,21,16],[27,45,33],[24,39,28]]

Example 2:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 2
Output: [[45,45,45],[45,45,45],[45,45,45]]

Constraints:

  • m == mat.length
  • n == mat[i].length
  • 1 <= m, n, K <= 100
  • 1 <= mat[i][j] <= 100

Solution: 2D range query

Time complexity: O(m*n)
Space complexity: O(m*n)

C++

花花酱 LeetCode 715. Range Module

Problem:

A Range Module is a module that tracks ranges of numbers. Your task is to design and implement the following interfaces in an efficient manner.

 

  • addRange(int left, int right) Adds the half-open interval [left, right), tracking every real number in that interval. Adding an interval that partially overlaps with currently tracked numbers should add any numbers in the interval [left, right) that are not already tracked.
  • queryRange(int left, int right) Returns true if and only if every real number in the interval [left, right) is currently being tracked.
  • removeRange(int left, int right) Stops tracking every real number currently being tracked in the interval [left, right).

Example 1:

Note:

  • A half open interval [left, right) denotes all real numbers left <= x < right.
  • 0 < left < right < 10^9 in all calls to addRange, queryRange, removeRange.
  • The total number of calls to addRange in a single test case is at most 1000.
  • The total number of calls to queryRange in a single test case is at most 5000.
  • The total number of calls to removeRange in a single test case is at most 1000.



Idea:

map / ordered ranges

  

 

Solution:

C++ / vector

C++ / map

Related Problems: