# Posts tagged as “query”

You are given an array nums consisting of non-negative integers. You are also given a queries array, where queries[i] = [xi, mi].

The answer to the ith query is the maximum bitwise XOR value of xi and any element of nums that does not exceed mi. In other words, the answer is max(nums[j] XOR xi) for all j such that nums[j] <= mi. If all elements in nums are larger than mi, then the answer is -1.

Return an integer array answer where answer.length == queries.length and answer[i] is the answer to the ith query.

Example 1:

Input: nums = [0,1,2,3,4], queries = [[3,1],[1,3],[5,6]]
Output: [3,3,7]
Explanation:
1) 0 and 1 are the only two integers not greater than 1. 0 XOR 3 = 3 and 1 XOR 3 = 2. The larger of the two is 3.
2) 1 XOR 2 = 3.
3) 5 XOR 2 = 7.


Example 2:

Input: nums = [5,2,4,6,6,3], queries = [[12,4],[8,1],[6,3]]
Output: [15,-1,5]


Constraints:

• 1 <= nums.length, queries.length <= 105
• queries[i].length == 2
• 0 <= nums[j], xi, mi <= 109

## Solution: Trie on the fly

We can build the trie on the fly by sorting nums in ascending order and queries by its limit, insert nums into the trie up the limit.

Time complexity: O(nlogn + QlogQ)
Space complexity: O(n)

## C++

Implement the class SubrectangleQueries which receives a rows x cols rectangle as a matrix of integers in the constructor and supports two methods:

1. updateSubrectangle(int row1, int col1, int row2, int col2, int newValue)

• Updates all values with newValue in the subrectangle whose upper left coordinate is (row1,col1) and bottom right coordinate is (row2,col2).

2. getValue(int row, int col)

• Returns the current value of the coordinate (row,col) from the rectangle.

Example 1:

Input
[[[[1,2,1],[4,3,4],[3,2,1],[1,1,1]]],[0,2],[0,0,3,2,5],[0,2],[3,1],[3,0,3,2,10],[3,1],[0,2]]
Output


[null,1,null,5,5,null,10,5]

Explanation SubrectangleQueries subrectangleQueries = new SubrectangleQueries([[1,2,1],[4,3,4],[3,2,1],[1,1,1]]); // The initial rectangle (4×3) looks like: // 1 2 1 // 4 3 4 // 3 2 1 // 1 1 1 subrectangleQueries.getValue(0, 2); // return 1 subrectangleQueries.updateSubrectangle(0, 0, 3, 2, 5); // After this update the rectangle looks like: // 5 5 5 // 5 5 5 // 5 5 5 // 5 5 5 subrectangleQueries.getValue(0, 2); // return 5 subrectangleQueries.getValue(3, 1); // return 5 subrectangleQueries.updateSubrectangle(3, 0, 3, 2, 10); // After this update the rectangle looks like: // 5 5 5 // 5 5 5 // 5 5 5 // 10 10 10 subrectangleQueries.getValue(3, 1); // return 10 subrectangleQueries.getValue(0, 2); // return 5

Example 2:

Input
[[[[1,1,1],[2,2,2],[3,3,3]]],[0,0],[0,0,2,2,100],[0,0],[2,2],[1,1,2,2,20],[2,2]]
Output


[null,1,null,100,100,null,20]

Explanation SubrectangleQueries subrectangleQueries = new SubrectangleQueries([[1,1,1],[2,2,2],[3,3,3]]); subrectangleQueries.getValue(0, 0); // return 1 subrectangleQueries.updateSubrectangle(0, 0, 2, 2, 100); subrectangleQueries.getValue(0, 0); // return 100 subrectangleQueries.getValue(2, 2); // return 100 subrectangleQueries.updateSubrectangle(1, 1, 2, 2, 20); subrectangleQueries.getValue(2, 2); // return 20

Constraints:

• There will be at most 500 operations considering both methods: updateSubrectangle and getValue.
• 1 <= rows, cols <= 100
• rows == rectangle.length
• cols == rectangle[i].length
• 0 <= row1 <= row2 < rows
• 0 <= col1 <= col2 < cols
• 1 <= newValue, rectangle[i][j] <= 10^9
• 0 <= row < rows
• 0 <= col < cols

## Solution 1: Simulation

Update the matrix values.

Time complexity:
Update: O(m*n), where m*n is the area of the sub-rectangle.
Query: O(1)

Space complexity: O(rows*cols)

## Solution 2: Geometry

For each update remember the region and value.

Time complexity:
Update: O(1)
Query: O(|U|), where |U| is the number of updates so far.

Space complexity: O(|U|)

## C++

Given a m * n matrix mat and an integer K, return a matrix answer where each answer[i][j] is the sum of all elements mat[r][c] for i - K <= r <= i + K, j - K <= c <= j + K, and (r, c) is a valid position in the matrix.

Example 1:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 1
Output: [[12,21,16],[27,45,33],[24,39,28]]


Example 2:

Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 2
Output: [[45,45,45],[45,45,45],[45,45,45]]


Constraints:

• m == mat.length
• n == mat[i].length
• 1 <= m, n, K <= 100
• 1 <= mat[i][j] <= 100

## Solution: 2D range query

Time complexity: O(m*n)
Space complexity: O(m*n)

## C++

Problem:

A Range Module is a module that tracks ranges of numbers. Your task is to design and implement the following interfaces in an efficient manner.

• addRange(int left, int right) Adds the half-open interval [left, right), tracking every real number in that interval. Adding an interval that partially overlaps with currently tracked numbers should add any numbers in the interval [left, right) that are not already tracked.
• queryRange(int left, int right) Returns true if and only if every real number in the interval [left, right) is currently being tracked.
• removeRange(int left, int right) Stops tracking every real number currently being tracked in the interval [left, right).

Example 1:

Note:

• A half open interval [left, right) denotes all real numbers left <= x < right.
• 0 < left < right < 10^9 in all calls to addRange, queryRange, removeRange.
• The total number of calls to addRange in a single test case is at most 1000.
• The total number of calls to queryRange in a single test case is at most 5000.
• The total number of calls to removeRange in a single test case is at most 1000.

Idea:

map / ordered ranges

Solution:

C++ / vector

C++ / map

Related Problems: