Press "Enter" to skip to content

Posts tagged as “simulation”

LeetCode 1422. Maximum Score After Splitting a String

Given a string s of zeros and ones, return the maximum score after splitting the string into two non-empty substrings (i.e. left substring and right substring).

The score after splitting a string is the number of zeros in the left substring plus the number of ones in the right substring.

Example 1:

Input: s = "011101"
Output: 5 
Explanation: 
All possible ways of splitting s into two non-empty substrings are:
left = "0" and right = "11101", score = 1 + 4 = 5 
left = "01" and right = "1101", score = 1 + 3 = 4 
left = "011" and right = "101", score = 1 + 2 = 3 
left = "0111" and right = "01", score = 1 + 1 = 2 
left = "01110" and right = "1", score = 2 + 1 = 3

Example 2:

Input: s = "00111"
Output: 5
Explanation: When left = "00" and right = "111", we get the maximum score = 2 + 3 = 5

Example 3:

Input: s = "1111"
Output: 3

Constraints:

  • 2 <= s.length <= 500
  • The string s consists of characters ‘0’ and ‘1’ only.

Solution 1: Brute Force

Time complexity: O(n^2)
Space complexity: O(1)

Solution 2: Counting

2.1 Two passes,
1st, count the number of ones of the entire string
2nd, inc zeros or dec ones according to s[i]
ans = max(zeros + ones)

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1410. HTML Entity Parser

HTML entity parser is the parser that takes HTML code as input and replace all the entities of the special characters by the characters itself.

The special characters and their entities for HTML are:

  • Quotation Mark: the entity is &quot; and symbol character is ".
  • Single Quote Mark: the entity is &apos; and symbol character is '.
  • Ampersand: the entity is &amp; and symbol character is &.
  • Greater Than Sign: the entity is &gt; and symbol character is >.
  • Less Than Sign: the entity is &lt; and symbol character is <.
  • Slash: the entity is &frasl; and symbol character is /.

Given the input text string to the HTML parser, you have to implement the entity parser.

Return the text after replacing the entities by the special characters.

Example 1:

Input: text = "&amp; is an HTML entity but &ambassador; is not."
Output: "& is an HTML entity but &ambassador; is not."
Explanation: The parser will replace the &amp; entity by &

Example 2:

Input: text = "and I quote: &quot;...&quot;"
Output: "and I quote: \"...\""

Example 3:

Input: text = "Stay home! Practice on Leetcode :)"
Output: "Stay home! Practice on Leetcode :)"

Example 4:

Input: text = "x &gt; y &amp;&amp; x &lt; y is always false"
Output: "x > y && x < y is always false"

Example 5:

Input: text = "leetcode.com&frasl;problemset&frasl;all"
Output: "leetcode.com/problemset/all"

Constraints:

  • 1 <= text.length <= 10^5
  • The string may contain any possible characters out of all the 256 ASCII characters.

Solution: Simulation

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1389. Create Target Array in the Given Order

Given two arrays of integers nums and index. Your task is to create target array under the following rules:

  • Initially target array is empty.
  • From left to right read nums[i] and index[i], insert at index index[i] the value nums[i] in target array.
  • Repeat the previous step until there are no elements to read in nums and index.

Return the target array.

It is guaranteed that the insertion operations will be valid.

Example 1:

Input: nums = [0,1,2,3,4], index = [0,1,2,2,1]
Output: [0,4,1,3,2]
Explanation:
nums       index     target
0            0        [0]
1            1        [0,1]
2            2        [0,1,2]
3            2        [0,1,3,2]
4            1        [0,4,1,3,2]

Example 2:

Input: nums = [1,2,3,4,0], index = [0,1,2,3,0]
Output: [0,1,2,3,4]
Explanation:
nums       index     target
1            0        [1]
2            1        [1,2]
3            2        [1,2,3]
4            3        [1,2,3,4]
0            0        [0,1,2,3,4]

Example 3:

Input: nums = [1], index = [0]
Output: [1]

Constraints:

  • 1 <= nums.length, index.length <= 100
  • nums.length == index.length
  • 0 <= nums[i] <= 100
  • 0 <= index[i] <= i

Solution: Simulation

Time complexity: O(n) ~ O(n^2)
Space complexity: O(n)

C++

花花酱 LeetCode 1387. Sort Integers by The Power Value

The power of an integer x is defined as the number of steps needed to transform x into 1 using the following steps:

  • if x is even then x = x / 2
  • if x is odd then x = 3 * x + 1

For example, the power of x = 3 is 7 because 3 needs 7 steps to become 1 (3 –> 10 –> 5 –> 16 –> 8 –> 4 –> 2 –> 1).

Given three integers lohi and k. The task is to sort all integers in the interval [lo, hi] by the power value in ascending order, if two or more integers have the same power value sort them by ascending order.

Return the k-th integer in the range [lo, hi] sorted by the power value.

Notice that for any integer x (lo <= x <= hi) it is guaranteed that x will transform into 1 using these steps and that the power of x is will fit in 32 bit signed integer.

Example 1:

Input: lo = 12, hi = 15, k = 2
Output: 13
Explanation: The power of 12 is 9 (12 --> 6 --> 3 --> 10 --> 5 --> 16 --> 8 --> 4 --> 2 --> 1)
The power of 13 is 9
The power of 14 is 17
The power of 15 is 17
The interval sorted by the power value [12,13,14,15]. For k = 2 answer is the second element which is 13.
Notice that 12 and 13 have the same power value and we sorted them in ascending order. Same for 14 and 15.

Example 2:

Input: lo = 1, hi = 1, k = 1
Output: 1

Example 3:

Input: lo = 7, hi = 11, k = 4
Output: 7
Explanation: The power array corresponding to the interval [7, 8, 9, 10, 11] is [16, 3, 19, 6, 14].
The interval sorted by power is [8, 10, 11, 7, 9].
The fourth number in the sorted array is 7.

Example 4:

Input: lo = 10, hi = 20, k = 5
Output: 13

Example 5:

Input: lo = 1, hi = 1000, k = 777
Output: 570

Constraints:

  • 1 <= lo <= hi <= 1000
  • 1 <= k <= hi - lo + 1

Solution: Precompute + quick select

Time complexity: O(nlogn) + O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 672. Bulb Switcher II

There is a room with n lights which are turned on initially and 4 buttons on the wall. After performing exactly m unknown operations towards buttons, you need to return how many different kinds of status of the n lights could be.

Suppose n lights are labeled as number [1, 2, 3 …, n], function of these 4 buttons are given below:

  1. Flip all the lights.
  2. Flip lights with even numbers.
  3. Flip lights with odd numbers.
  4. Flip lights with (3k + 1) numbers, k = 0, 1, 2, …

Example 1:

Input: n = 1, m = 1.
Output: 2
Explanation: Status can be: [on], [off]

Example 2:

Input: n = 2, m = 1.
Output: 3
Explanation: Status can be: [on, off], [off, on], [off, off]

Example 3:

Input: n = 3, m = 1.
Output: 4
Explanation: Status can be: [off, on, off], [on, off, on], [off, off, off], [off, on, on].

Note: n and m both fit in range [0, 1000].

Solution1: Bitmask + Simulation

The light pattern will be repeated if we have more than 6 lights, so n = n % 6, n = 6 if n == 0.

Time complexity: O(m*2^6)
Space complexity: O(2^6)

C++