# Posts tagged as “simulation”

You are given an integer n, the number of teams in a tournament that has strange rules:

• If the current number of teams is even, each team gets paired with another team. A total of n / 2 matches are played, and n / 2 teams advance to the next round.
• If the current number of teams is odd, one team randomly advances in the tournament, and the rest gets paired. A total of (n - 1) / 2 matches are played, and (n - 1) / 2 + 1 teams advance to the next round.

Return the number of matches played in the tournament until a winner is decided.

Example 1:

Input: n = 7
Output: 6
Explanation: Details of the tournament:
- 1st Round: Teams = 7, Matches = 3, and 4 teams advance.
- 2nd Round: Teams = 4, Matches = 2, and 2 teams advance.
- 3rd Round: Teams = 2, Matches = 1, and 1 team is declared the winner.
Total number of matches = 3 + 2 + 1 = 6.


Example 2:

Input: n = 14
Output: 13
Explanation: Details of the tournament:
- 1st Round: Teams = 14, Matches = 7, and 7 teams advance.
- 2nd Round: Teams = 7, Matches = 3, and 4 teams advance.
- 3rd Round: Teams = 4, Matches = 2, and 2 teams advance.
- 4th Round: Teams = 2, Matches = 1, and 1 team is declared the winner.
Total number of matches = 7 + 3 + 2 + 1 = 13.


Constraints:

• 1 <= n <= 200

## Solution: Simulation / Recursion

Time complexity: O(logn)
Space complexity: O(1)

## C++

You have a bomb to defuse, and your time is running out! Your informer will provide you with a circular array code of length of n and a key k.

To decrypt the code, you must replace every number. All the numbers are replaced simultaneously.

• If k > 0, replace the ith number with the sum of the next k numbers.
• If k < 0, replace the ith number with the sum of the previous k numbers.
• If k == 0, replace the ith number with 0.

As code is circular, the next element of code[n-1] is code[0], and the previous element of code[0] is code[n-1].

Given the circular array code and an integer key k, return the decrypted code to defuse the bomb!

Example 1:

Input: code = [5,7,1,4], k = 3
Output: [12,10,16,13]
Explanation: Each number is replaced by the sum of the next 3 numbers. The decrypted code is [7+1+4, 1+4+5, 4+5+7, 5+7+1]. Notice that the numbers wrap around.


Example 2:

Input: code = [1,2,3,4], k = 0
Output: [0,0,0,0]
Explanation: When k is zero, the numbers are replaced by 0.


Example 3:

Input: code = [2,4,9,3], k = -2
Output: [12,5,6,13]
Explanation: The decrypted code is [3+9, 2+3, 4+2, 9+4]. Notice that the numbers wrap around again. If k is negative, the sum is of the previous numbers.


Constraints:

• n == code.length
• 1 <= n <= 100
• 1 <= code[i] <= 100
• -(n - 1) <= k <= n - 1

## Solution 1: Simulation

Time complexity: O(n*k)
Space complexity: O(n)

## C++

You are given an integer n. An array nums of length n + 1 is generated in the following way:

• nums[0] = 0
• nums[1] = 1
• nums[2 * i] = nums[i] when 2 <= 2 * i <= n
• nums[2 * i + 1] = nums[i] + nums[i + 1] when 2 <= 2 * i + 1 <= n

Returnthe maximum integer in the array nums​​​.

Example 1:

Input: n = 7
Output: 3
Explanation: According to the given rules:
nums[0] = 0
nums[1] = 1
nums[(1 * 2) = 2] = nums[1] = 1
nums[(1 * 2) + 1 = 3] = nums[1] + nums[2] = 1 + 1 = 2
nums[(2 * 2) = 4] = nums[2] = 1
nums[(2 * 2) + 1 = 5] = nums[2] + nums[3] = 1 + 2 = 3
nums[(3 * 2) = 6] = nums[3] = 2
nums[(3 * 2) + 1 = 7] = nums[3] + nums[4] = 2 + 1 = 3
Hence, nums = [0,1,1,2,1,3,2,3], and the maximum is 3.


Example 2:

Input: n = 2
Output: 1
Explanation: According to the given rules, the maximum between nums[0], nums[1], and nums[2] is 1.


Example 3:

Input: n = 3
Output: 2
Explanation: According to the given rules, the maximum between nums[0], nums[1], nums[2], and nums[3] is 2.


Constraints:

• 0 <= n <= 100

## Solution: Simulation

Generate the array by the given rules.

Time complexity: O(n)
Space complexity: O(n)

## C++

You have k servers numbered from 0 to k-1 that are being used to handle multiple requests simultaneously. Each server has infinite computational capacity but cannot handle more than one request at a time. The requests are assigned to servers according to a specific algorithm:

• The ith (0-indexed) request arrives.
• If all servers are busy, the request is dropped (not handled at all).
• If the (i % k)th server is available, assign the request to that server.
• Otherwise, assign the request to the next available server (wrapping around the list of servers and starting from 0 if necessary). For example, if the ith server is busy, try to assign the request to the (i+1)th server, then the (i+2)th server, and so on.

You are given a strictly increasing array arrival of positive integers, where arrival[i] represents the arrival time of the ith request, and another array load, where load[i] represents the load of the ith request (the time it takes to complete). Your goal is to find the busiest server(s). A server is considered busiest if it handled the most number of requests successfully among all the servers.

Return a list containing the IDs (0-indexed) of the busiest server(s). You may return the IDs in any order.

Example 1:

Input: k = 3, arrival = [1,2,3,4,5], load = [5,2,3,3,3]
Output: [1]
Explanation:
All of the servers start out available.
The first 3 requests are handled by the first 3 servers in order.
Request 3 comes in. Server 0 is busy, so it's assigned to the next available server, which is 1.
Request 4 comes in. It cannot be handled since all servers are busy, so it is dropped.
Servers 0 and 2 handled one request each, while server 1 handled two requests. Hence server 1 is the busiest server.


Example 2:

Input: k = 3, arrival = [1,2,3,4], load = [1,2,1,2]
Output: [0]
Explanation:
The first 3 requests are handled by first 3 servers.
Request 3 comes in. It is handled by server 0 since the server is available.
Server 0 handled two requests, while servers 1 and 2 handled one request each. Hence server 0 is the busiest server.


Example 3:

Input: k = 3, arrival = [1,2,3], load = [10,12,11]
Output: [0,1,2]
Explanation: Each server handles a single request, so they are all considered the busiest.


Example 4:

Input: k = 3, arrival = [1,2,3,4,8,9,10], load = [5,2,10,3,1,2,2]
Output: [1]


Example 5:

Input: k = 1, arrival = [1], load = [1]
Output: [0]


Constraints:

• 1 <= k <= 105
• 1 <= arrival.length, load.length <= 105
• arrival.length == load.length
• 1 <= arrival[i], load[i] <= 109
• arrival is strictly increasing.

## Solution: Heap + TreeSet

Use a min heap to store the release time -> server.
Use a treeset to track the current available servers.
For reach request, check whether servers can be released at that time.

Time complexity: O(nlogk)
Space complexity: O(k)

## C++

Design a parking system for a parking lot. The parking lot has three kinds of parking spaces: big, medium, and small, with a fixed number of slots for each size.

Implement the ParkingSystem class:

• ParkingSystem(int big, int medium, int small) Initializes object of the ParkingSystem class. The number of slots for each parking space are given as part of the constructor.
• bool addCar(int carType) Checks whether there is a parking space of carType for the car that wants to get into the parking lot. carType can be of three kinds: big, medium, or small, which are represented by 12, and 3 respectively. A car can only park in a parking space of its carType. If there is no space available, return false, else park the car in that size space and return true.

Example 1:

Input
[[1, 1, 0], [1], [2], [3], [1]]
Output
[null, true, true, false, false]


Explanation ParkingSystem parkingSystem = new ParkingSystem(1, 1, 0); parkingSystem.addCar(1); // return true because there is 1 available slot for a big car parkingSystem.addCar(2); // return true because there is 1 available slot for a medium car parkingSystem.addCar(3); // return false because there is no available slot for a small car parkingSystem.addCar(1); // return false because there is no available slot for a big car. It is already occupied.

Constraints:

• 0 <= big, medium, small <= 1000
• carType is 12, or 3
• At most 1000 calls will be made to addCar

## Solution: Simulation

Time complexity: O(1) per addCar call
Space complexity: O(1)