Press "Enter" to skip to content

Posts tagged as “string”

花花酱 LeetCode 1405. Longest Happy String

A string is called happy if it does not have any of the strings 'aaa''bbb' or 'ccc' as a substring.

Given three integers ab and c, return any string s, which satisfies following conditions:

  • s is happy and longest possible.
  • s contains at most a occurrences of the letter 'a'at most b occurrences of the letter 'b' and at most c occurrences of the letter 'c'.
  • will only contain 'a''b' and 'c' letters.

If there is no such string s return the empty string "".

Example 1:

Input: a = 1, b = 1, c = 7
Output: "ccaccbcc"
Explanation: "ccbccacc" would also be a correct answer.

Example 2:

Input: a = 2, b = 2, c = 1
Output: "aabbc"

Example 3:

Input: a = 7, b = 1, c = 0
Output: "aabaa"
Explanation: It's the only correct answer in this case.

Constraints:

  • 0 <= a, b, c <= 100
  • a + b + c > 0

Solution: Greedy

Put the char with highest frequency first if its consecutive length of that char is < 2
or put one char if any of other two chars has consecutive length of 2.

increase the consecutive length of itself and reset that for other two chars.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1404. Number of Steps to Reduce a Number in Binary Representation to One

Given a number s in their binary representation. Return the number of steps to reduce it to 1 under the following rules:

  • If the current number is even, you have to divide it by 2.
  • If the current number is odd, you have to add 1 to it.

It’s guaranteed that you can always reach to one for all testcases.

Example 1:

Input: s = "1101"
Output: 6
Explanation: "1101" corressponds to number 13 in their decimal representation.
Step 1) 13 is odd, add 1 and obtain 14. 
Step 2) 14 is even, divide by 2 and obtain 7.
Step 3) 7 is odd, add 1 and obtain 8.
Step 4) 8 is even, divide by 2 and obtain 4.  
Step 5) 4 is even, divide by 2 and obtain 2. 
Step 6) 2 is even, divide by 2 and obtain 1.  

Example 2:

Input: s = "10"
Output: 1
Explanation: "10" corressponds to number 2 in their decimal representation.
Step 1) 2 is even, divide by 2 and obtain 1.  

Example 3:

Input: s = "1"
Output: 0

Constraints:

  • 1 <= s.length <= 500
  • s consists of characters ‘0’ or ‘1’
  • s[0] == '1'

Solution: Simulation

Time complexity: O(n)
Space complexity: O(1)

C++

Python3

花花酱 LeetCode 1392. Longest Happy Prefix

A string is called a happy prefix if is a non-empty prefix which is also a suffix (excluding itself).

Given a string s. Return the longest happy prefix of s .

Return an empty string if no such prefix exists.

Example 1:

Input: s = "level"
Output: "l"
Explanation: s contains 4 prefix excluding itself ("l", "le", "lev", "leve"), and suffix ("l", "el", "vel", "evel"). The largest prefix which is also suffix is given by "l".

Example 2:

Input: s = "ababab"
Output: "abab"
Explanation: "abab" is the largest prefix which is also suffix. They can overlap in the original string.

Example 3:

Input: s = "leetcodeleet"
Output: "leet"

Example 4:

Input: s = "a"
Output: ""

Constraints:

  • 1 <= s.length <= 10^5
  • s contains only lowercase English letters.

Solution: Rolling Hash

Time complexity: O(n) / worst case: O(n^2)
Space complexity: O(1)

C++

花花酱 LeetCode 306. Additive Number

Additive number is a string whose digits can form additive sequence.

A valid additive sequence should contain at least three numbers. Except for the first two numbers, each subsequent number in the sequence must be the sum of the preceding two.

Given a string containing only digits '0'-'9', write a function to determine if it’s an additive number.

Note: Numbers in the additive sequence cannot have leading zeros, so sequence 1, 2, 03 or 1, 02, 3 is invalid.

Example 1:

Input: "112358"
Output: true
Explanation: The digits can form an additive sequence: 1, 1, 2, 3, 5, 8. 
             1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 3 + 5 = 8

Example 2:

Input: "199100199"
Output: true
Explanation: The additive sequence is: 1, 99, 100, 199. 
             1 + 99 = 100, 99 + 100 = 199

Constraints:

  • num consists only of digits '0'-'9'.
  • 1 <= num.length <= 35

Solution: DFS

Time complexity: O(n^2)
Space complexity: O(n)

C++

Python3

花花酱 LeetCode 165. Compare Version Numbers

Compare two version numbers version1 and version2.
If version1 > version2 return 1; if version1 < version2 return -1;otherwise return 0.

You may assume that the version strings are non-empty and contain only digits and the . character.

The . character does not represent a decimal point and is used to separate number sequences.

For instance, 2.5 is not “two and a half” or “half way to version three”, it is the fifth second-level revision of the second first-level revision.

You may assume the default revision number for each level of a version number to be 0. For example, version number 3.4 has a revision number of 3 and 4 for its first and second level revision number. Its third and fourth level revision number are both 0.

Example 1:

Input: version1 = "0.1", version2 = "1.1"
Output: -1

Example 2:

Input: version1 = "1.0.1", version2 = "1"
Output: 1

Example 3:

Input: version1 = "7.5.2.4", version2 = "7.5.3"
Output: -1

Example 4:

Input: version1 = "1.01", version2 = "1.001"
Output: 0
Explanation: Ignoring leading zeroes, both “01” and “001" represent the same number “1”

Example 5:

Input: version1 = "1.0", version2 = "1.0.0"
Output: 0
Explanation: The first version number does not have a third level revision number, which means its third level revision number is default to "0"

Note:

  1. Version strings are composed of numeric strings separated by dots . and this numeric strings may have leading zeroes.
  2. Version strings do not start or end with dots, and they will not be two consecutive dots.

Solution: String

Split the version string to a list of numbers, and compare two lists.

Time complexity: O(l1 + l2)
Space complexity: O(l1 + l2)

C++