There is a room with n bulbs, numbered from 0 to n-1, arranged in a row from left to right. Initially all the bulbs are turned off.

Your task is to obtain the configuration represented by target where target[i] is ‘1’ if the i-th bulb is turned on and is ‘0’ if it is turned off.

You have a switch to flip the state of the bulb, a flip operation is defined as follows:

• Choose any bulb (index i) of your current configuration.
• Flip each bulb from index i to n-1.

When any bulb is flipped it means that if it is 0 it changes to 1 and if it is 1 it changes to 0.

Return the minimum number of flips required to form target.

Example 1:

Input: target = "10111"
Output: 3
Explanation: Initial configuration "00000".
flip from the third bulb:  "00000" -> "00111"
flip from the first bulb:  "00111" -> "11000"
flip from the second bulb:  "11000" -> "10111"
We need at least 3 flip operations to form target.

Example 2:

Input: target = "101"
Output: 3
Explanation: "000" -> "111" -> "100" -> "101".


Example 3:

Input: target = "00000"
Output: 0


Example 4:

Input: target = "001011101"
Output: 5


Constraints:

• 1 <= target.length <= 10^5
• target[i] == '0' or target[i] == '1'

## Solution: XOR

Flip from left to right, since flipping the a bulb won’t affect anything in the left.
We count how many times flipped so far, and that % 2 will be the state for all the bulb to the right.
If the current bulb’s state != target, we have to flip once.

Time complexity: O(n)
Space complexity: O(1)

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website

Paypal
Venmo
huahualeetcode