There is an integer array perm that is a permutation of the first n positive integers, where n is always odd.

It was encoded into another integer array encoded of length n - 1, such that encoded[i] = perm[i] XOR perm[i + 1]. For example, if perm = [1,3,2], then encoded = [2,1].

Given the encoded array, return the original array perm. It is guaranteed that the answer exists and is unique.

Example 1:

Input: encoded = [3,1]
Output: [1,2,3]
Explanation: If perm = [1,2,3], then encoded = [1 XOR 2,2 XOR 3] = [3,1]


Example 2:

Input: encoded = [6,5,4,6]
Output: [2,4,1,5,3]


Constraints:

• 3 <= n < 105
• n is odd.
• encoded.length == n - 1

## Solution: XOR

The key is to find p[0]. p[i] = p[i – 1] ^ encoded[i – 1]

1. p[0] ^ p[1] ^ … ^ p[n-1] = 1 ^ 2 ^ … ^ n
2. encoded[1] ^ encode[3] ^ … ^ encoded[n-2] = (p[1] ^ p[2]) ^ (p[3] ^ p[4]) ^ … ^ (p[n-2] ^ p[n-1])

1) xor 2) = p[0]

Time complexity: O(n)
Space complexity: O(1)

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website

Paypal
Venmo
huahualeetcode