Given two integers dividend and divisor, divide two integers without using multiplication, division, and mod operator.
The integer division should truncate toward zero, which means losing its fractional part. For example, 8.345 would be truncated to 8, and -2.7335 would be truncated to -2.
Return the quotient after dividing dividend by divisor.
Note: Assume we are dealing with an environment that could only store integers within the 32-bit signed integer range: [−231, 231 − 1]. For this problem, if the quotient is strictly greater than 231 - 1, then return 231 - 1, and if the quotient is strictly less than -231, then return -231.
Example 1:
Input: dividend = 10, divisor = 3 Output: 3 Explanation: 10/3 = 3.33333.. which is truncated to 3.
Example 2:
Input: dividend = 7, divisor = -3 Output: -2 Explanation: 7/-3 = -2.33333.. which is truncated to -2.
Example 3:
Input: dividend = 0, divisor = 1 Output: 0
Example 4:
Input: dividend = 1, divisor = 1 Output: 1
Constraints:
-231 <= dividend, divisor <= 231 - 1divisor != 0
Solution: Binary / Bit Operation
The answer can be represented in binary format.
a / b = c
a >= b * Σ(di*2i)
c = Σ(di*2i)
e.g. 1: 10 / 3
=> 10 >= 3*(21 + 20) = 3 * (2 + 1) = 9
ans = 21 + 20 = 3
e.g. 2: 100 / 7
=> 100 >= 7*(23 + 22+21) = 7 * (8 + 4 + 2) = 7 * 14 = 98
ans = 23+22+21=8+4+2=14
Time complexity: O(32)
Space complexity: O(1)
C++
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
// Author: Huahua class Solution { public: int divide(int A, int B) { if (B == INT_MIN) return A == INT_MIN ? 1 : 0; if (A == INT_MIN) { if (B == -1) return INT_MAX; return B > 0 ? divide(A + B, B) - 1 : divide(A - B, B) + 1; } int a = abs(A); int b = abs(B); int ans = 0; for (int x = 31; x >= 0; --x) if (a >> x >= b) ans += 1 << x, a -= b << x; return (A > 0) == (B > 0) ? ans : -ans; } }; |
请尊重作者的劳动成果,转载请注明出处!花花保留对文章/视频的所有权利。
如果您喜欢这篇文章/视频,欢迎您捐赠花花。
If you like my articles / videos, donations are welcome.


Be First to Comment