# Posts published in “Array”

Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in-place.

Example 1:

Input:
[
[1,1,1],
[1,0,1],
[1,1,1]
]
Output:
[
[1,0,1],
[0,0,0],
[1,0,1]
]

Example 2:

Input:
[
[0,1,2,0],
[3,4,5,2],
[1,3,1,5]
]
Output:
[
[0,0,0,0],
[0,4,5,0],
[0,3,1,0]
]

• A straight forward solution using O(mn) space is probably a bad idea.
• A simple improvement uses O(m + n) space, but still not the best solution.
• Could you devise a constant space solution?

## Solution 1

Use two arrays to track whether the i-th row / j-th column need to be zeroed.

Time complexity: O(mn)
Space complexity: O(m+n)

## Solution 2

Use the first row / first col to indicate whether the i-th row / j-th column need be zeroed.

# Problem

Given an array A of integers, return true if and only if it is a valid mountain array.

Recall that A is a mountain array if and only if:

• A.length >= 3
• There exists some i with 0 < i < A.length - 1 such that:
• A[0] < A[1] < ... A[i-1] < A[i]
• A[i] > A[i+1] > ... > A[B.length - 1]

Example 1:

Input: [2,1]
Output: false

Example 2:

Input: [3,5,5]
Output: false

Example 3:

Input: [0,3,2,1]
Output: true

Note:

1. 0 <= A.length <= 10000
2. 0 <= A[i] <= 10000

# Solution

Use has_up and has_down to track whether we have A[i] > A[i – 1] and A[i] < A[i – 1] receptively.

return false if any of the following happened:

1. size(A) < 3
2. has_down happened before has_up
3. not has_down or not has_up
4. A[i – 1] < A[i] after has_down
5. A[i – 1] > A[i] before has_up

Time complexity: O(n)

Space complexity: O(n)

# Problem

Implement next permutation, which rearranges numbers into the lexicographically next greater permutation of numbers.

If such arrangement is not possible, it must rearrange it as the lowest possible order (ie, sorted in ascending order).

The replacement must be in-place and use only constant extra memory.

Here are some examples. Inputs are in the left-hand column and its corresponding outputs are in the right-hand column.

1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1

# Solution

Find the last acceding element x, swap with the smallest number y, y is after x that and y is greater than x.

Reverse the elements after x.

Time complexity: O(n)

Space complexity: O(1)

# Problem

Given an array nums and a value val, remove all instances of that value in-place and return the new length.

Do not allocate extra space for another array, you must do this by modifying the input array in-place with O(1) extra memory.

The order of elements can be changed. It doesn’t matter what you leave beyond the new length.

Example 1:

Given nums = [3,2,2,3], val = 3,

Your function should return length = 2, with the first two elements of nums being 2.

It doesn't matter what you leave beyond the returned length.

Example 2:

Given nums = [0,1,2,2,3,0,4,2], val = 2,

Your function should return length = 5, with the first five elements of nums containing 0, 1, 3, 0, and 4. Note that the order of those five elements can be arbitrary. It doesn't matter what values are set beyond the returned length.

Clarification:

Confused why the returned value is an integer but your answer is an array?

Note that the input array is passed in by reference, which means modification to the input array will be known to the caller as well.

Internally you can think of this:

// nums is passed in by reference. (i.e., without making a copy)
int len = removeElement(nums, val);

// any modification to nums in your function would be known by the caller.
// using the length returned by your function, it prints the first len elements.
for (int i = 0; i < len; i++) {
print(nums[i]);
}

# Solution:

Time complexity: O(n)

Space complexity: O(1)

# Problem

Given a sorted array nums, remove the duplicates in-place such that each element appear only once and return the new length.

Do not allocate extra space for another array, you must do this by modifying the input array in-place with O(1) extra memory.

Example 1:

Given nums = [1,1,2],

Your function should return length = 2, with the first two elements of nums being 1 and 2 respectively. It doesn't matter what you leave beyond the returned length.

Example 2:

Given nums = [0,0,1,1,1,2,2,3,3,4],

Your function should return length = 5, with the first five elements of nums being modified to 0, 1, 2, 3, and 4 respectively. It doesn't matter what values are set beyond the returned length.

Clarification:

Confused why the returned value is an integer but your answer is an array?

Note that the input array is passed in by reference, which means modification to the input array will be known to the caller as well.

Internally you can think of this:

// nums is passed in by reference. (i.e., without making a copy)
int len = removeDuplicates(nums);

// any modification to nums in your function would be known by the caller.
// using the length returned by your function, it prints the first len elements.
for (int i = 0; i < len; i++) {
print(nums[i]);
}

# Solution:

Time complexity: O(n)

Space complexity: O(1)

## C++

Mission News Theme by Compete Themes.