Press "Enter" to skip to content

Posts published in “Array”

花花酱 LeetCode 410. Split Array Largest Sum

Problem

Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.

Note:
If n is the length of array, assume the following constraints are satisfied:

  • 1 ≤ n ≤ 1000
  • 1 ≤ m ≤ min(50, n)

Examples:

Input:
nums = [7,2,5,10,8]
m = 2

Output:
18

Explanation:
There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8],
where the largest sum among the two subarrays is only 18.

 

Solution: DP

Time complexity: O(n^2*m)

Space complexity: O(n*m)

C++ / Recursion + Memorization

C++ / DP

Solution: Binary Search

Time complexity: O(log(sum(nums))*n)

Space complexity: O(1)

 

花花酱 LeetCode 605. Can Place Flowers

Problem

Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, flowers cannot be planted in adjacent plots – they would compete for water and both would die.

Given a flowerbed (represented as an array containing 0 and 1, where 0 means empty and 1 means not empty), and a number n, return if n new flowers can be planted in it without violating the no-adjacent-flowers rule.

Example 1:

Input: flowerbed = [1,0,0,0,1], n = 1
Output: True

Example 2:

Input: flowerbed = [1,0,0,0,1], n = 2
Output: False

Note:

  1. The input array won’t violate no-adjacent-flowers rule.
  2. The input array size is in the range of [1, 20000].
  3. n is a non-negative integer which won’t exceed the input array size.

Solution: Greedy

Time complexity: O(n)

Space complexity: O(1)

C++

 

花花酱 LeetCode 228. Summary Ranges

Problem

Given a sorted integer array without duplicates, return the summary of its ranges.

Example 1:

Input:  [0,1,2,4,5,7]
Output: ["0->2","4->5","7"]
Explanation: 0,1,2 form a continuous range; 4,5 form a continuous range.

Example 2:

Input:  [0,2,3,4,6,8,9]
Output: ["0","2->4","6","8->9"]
Explanation: 2,3,4 form a continuous range; 8,9 form a continuous range.

Solution

Time complexity: O(n)

Space complexity: O(k)

C++

 

花花酱 LeetCode 852. Peak Index in a Mountain Array

Problem

Let’s call an array A a mountain if the following properties hold:

  • A.length >= 3
  • There exists some 0 < i < A.length - 1 such that A[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1]

Given an array that is definitely a mountain, return any i such that A[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1].

Example 1:

Input: [0,1,0]
Output: 1

Example 2:

Input: [0,2,1,0]
Output: 1

Note:

  1. 3 <= A.length <= 10000
  2. 0 <= A[i] <= 10^6
  3. A is a mountain, as defined above.

Solution1: Liner Scan

Time complexity: O(n)

Space complexity: O(1)

C++

C++/STL

Solution 2: Binary Search

Find the smallest l such that A[l] > A[l + 1].

Time complexity: O(logn)

Space complexity: O(1)

C++

Java

Python3

花花酱 LeetCode 849. Maximize Distance to Closest Person

Problem

In a row of seats1 represents a person sitting in that seat, and 0 represents that the seat is empty.

There is at least one empty seat, and at least one person sitting.

Alex wants to sit in the seat such that the distance between him and the closest person to him is maximized.

Return that maximum distance to closest person.

Example 1:

Input: [1,0,0,0,1,0,1]
Output: 2
Explanation: 
If Alex sits in the second open seat (seats[2]), then the closest person has distance 2.
If Alex sits in any other open seat, the closest person has distance 1.
Thus, the maximum distance to the closest person is 2.

Example 2:

Input: [1,0,0,0]
Output: 3
Explanation: 
If Alex sits in the last seat, the closest person is 3 seats away.
This is the maximum distance possible, so the answer is 3.

Note:

  1. 1 <= seats.length <= 20000
  2. seats contains only 0s or 1s, at least one 0, and at least one 1.

Solution

Time complexity: O(n)

Space complexity: O(1)