Press "Enter" to skip to content

Posts published in “Graph”

花花酱 LeetCode 2374. Node With Highest Edge Score

You are given a directed graph with n nodes labeled from 0 to n - 1, where each node has exactly one outgoing edge.

The graph is represented by a given 0-indexed integer array edges of length n, where edges[i] indicates that there is a directed edge from node i to node edges[i].

The edge score of a node i is defined as the sum of the labels of all the nodes that have an edge pointing to i.

Return the node with the highest edge score. If multiple nodes have the same edge score, return the node with the smallest index.

Example 1:

Input: edges = [1,0,0,0,0,7,7,5]
Output: 7
Explanation:
- The nodes 1, 2, 3 and 4 have an edge pointing to node 0. The edge score of node 0 is 1 + 2 + 3 + 4 = 10.
- The node 0 has an edge pointing to node 1. The edge score of node 1 is 0.
- The node 7 has an edge pointing to node 5. The edge score of node 5 is 7.
- The nodes 5 and 6 have an edge pointing to node 7. The edge score of node 7 is 5 + 6 = 11.
Node 7 has the highest edge score so return 7.

Example 2:

Input: edges = [2,0,0,2]
Output: 0
Explanation:
- The nodes 1 and 2 have an edge pointing to node 0. The edge score of node 0 is 1 + 2 = 3.
- The nodes 0 and 3 have an edge pointing to node 2. The edge score of node 2 is 0 + 3 = 3.
Nodes 0 and 2 both have an edge score of 3. Since node 0 has a smaller index, we return 0.

Constraints:

  • n == edges.length
  • 2 <= n <= 105
  • 0 <= edges[i] < n
  • edges[i] != i

Solution:

Use an array to store the score of each node.

Time complexity: O(n)
Space complexity: O(n)

use max_element to find the largest element.

C++

花花酱 LeetCode 133. Clone Graph

Given a reference of a node in a connected undirected graph.

Return a deep copy (clone) of the graph.

Each node in the graph contains a value (int) and a list (List[Node]) of its neighbors.

class Node {
    public int val;
    public List neighbors;
}

Test case format:

For simplicity, each node’s value is the same as the node’s index (1-indexed). For example, the first node with val == 1, the second node with val == 2, and so on. The graph is represented in the test case using an adjacency list.

An adjacency list is a collection of unordered lists used to represent a finite graph. Each list describes the set of neighbors of a node in the graph.

The given node will always be the first node with val = 1. You must return the copy of the given node as a reference to the cloned graph.

Example 1:

Input: adjList = [[2,4],[1,3],[2,4],[1,3]]
Output: [[2,4],[1,3],[2,4],[1,3]]
Explanation: There are 4 nodes in the graph.
1st node (val = 1)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
2nd node (val = 2)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).
3rd node (val = 3)'s neighbors are 2nd node (val = 2) and 4th node (val = 4).
4th node (val = 4)'s neighbors are 1st node (val = 1) and 3rd node (val = 3).

Example 2:

Input: adjList = [[]]
Output: [[]]
Explanation: Note that the input contains one empty list. The graph consists of only one node with val = 1 and it does not have any neighbors.

Example 3:

Input: adjList = []
Output: []
Explanation: This an empty graph, it does not have any nodes.

Constraints:

  • The number of nodes in the graph is in the range [0, 100].
  • 1 <= Node.val <= 100
  • Node.val is unique for each node.
  • There are no repeated edges and no self-loops in the graph.
  • The Graph is connected and all nodes can be visited starting from the given node.

Solution: DFS + Hashtable

Time complexity: O(V+E)
Space complexity: O(V+E)

C++

花花酱 LeetCode 2316. Count Unreachable Pairs of Nodes in an Undirected Graph

You are given an integer n. There is an undirected graph with n nodes, numbered from 0 to n - 1. You are given a 2D integer array edges where edges[i] = [ai, bi] denotes that there exists an undirected edge connecting nodes ai and bi.

Return the number of pairs of different nodes that are unreachable from each other.

Example 1:

Input: n = 3, edges = [[0,1],[0,2],[1,2]]
Output: 0
Explanation: There are no pairs of nodes that are unreachable from each other. Therefore, we return 0.

Example 2:

Input: n = 7, edges = [[0,2],[0,5],[2,4],[1,6],[5,4]]
Output: 14
Explanation: There are 14 pairs of nodes that are unreachable from each other:
[[0,1],[0,3],[0,6],[1,2],[1,3],[1,4],[1,5],[2,3],[2,6],[3,4],[3,5],[3,6],[4,6],[5,6]].
Therefore, we return 14.

Constraints:

  • 1 <= n <= 105
  • 0 <= edges.length <= 2 * 105
  • edges[i].length == 2
  • 0 <= ai, bi < n
  • ai != bi
  • There are no repeated edges.

Solution 1: DFS

Use DFS to find all CCs

Time complexity: O(V+E)
Space complexity: O(V+E)

C++

Solution 2: Union Find

Time complexity: O(V+E)
Space complexity: O(V)

C++

花花酱 LeetCode 2192. All Ancestors of a Node in a Directed Acyclic Graph

You are given a positive integer n representing the number of nodes of a Directed Acyclic Graph (DAG). The nodes are numbered from 0 to n - 1 (inclusive).

You are also given a 2D integer array edges, where edges[i] = [fromi, toi] denotes that there is a unidirectional edge from fromi to toi in the graph.

Return a list answer, where answer[i] is the list of ancestors of the ith node, sorted in ascending order.

A node u is an ancestor of another node v if u can reach v via a set of edges.

Example 1:

Input: n = 8, edgeList = [[0,3],[0,4],[1,3],[2,4],[2,7],[3,5],[3,6],[3,7],[4,6]]
Output: [[],[],[],[0,1],[0,2],[0,1,3],[0,1,2,3,4],[0,1,2,3]]
Explanation:
The above diagram represents the input graph.
- Nodes 0, 1, and 2 do not have any ancestors.
- Node 3 has two ancestors 0 and 1.
- Node 4 has two ancestors 0 and 2.
- Node 5 has three ancestors 0, 1, and 3.
- Node 6 has five ancestors 0, 1, 2, 3, and 4.
- Node 7 has four ancestors 0, 1, 2, and 3.

Example 2:

Input: n = 5, edgeList = [[0,1],[0,2],[0,3],[0,4],[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
Output: [[],[0],[0,1],[0,1,2],[0,1,2,3]]
Explanation:
The above diagram represents the input graph.
- Node 0 does not have any ancestor.
- Node 1 has one ancestor 0.
- Node 2 has two ancestors 0 and 1.
- Node 3 has three ancestors 0, 1, and 2.
- Node 4 has four ancestors 0, 1, 2, and 3.

Constraints:

  • 1 <= n <= 1000
  • 0 <= edges.length <= min(2000, n * (n - 1) / 2)
  • edges[i].length == 2
  • 0 <= fromi, toi <= n - 1
  • fromi != toi
  • There are no duplicate edges.
  • The graph is directed and acyclic.

Solution: DFS

For each source node S, add it to all its reachable nodes by traversing the entire graph.
In one pass, only traverse each child node at most once.

Time complexity: O(VE)
Space complexity: (V+E)

C++

花花酱 LeetCode 1998. GCD Sort of an Array

You are given an integer array nums, and you can perform the following operation any number of times on nums:

  • Swap the positions of two elements nums[i] and nums[j] if gcd(nums[i], nums[j]) > 1 where gcd(nums[i], nums[j]) is the greatest common divisor of nums[i] and nums[j].

Return true if it is possible to sort nums in non-decreasing order using the above swap method, or false otherwise.

Example 1:

Input: nums = [7,21,3]
Output: true
Explanation: We can sort [7,21,3] by performing the following operations:
- Swap 7 and 21 because gcd(7,21) = 7. nums = [21,7,3]
- Swap 21 and 3 because gcd(21,3) = 3. nums = [3,7,21]

Example 2:

Input: nums = [5,2,6,2]
Output: false
Explanation: It is impossible to sort the array because 5 cannot be swapped with any other element.

Example 3:

Input: nums = [10,5,9,3,15]
Output: true
We can sort [10,5,9,3,15] by performing the following operations:
- Swap 10 and 15 because gcd(10,15) = 5. nums = [15,5,9,3,10]
- Swap 15 and 3 because gcd(15,3) = 3. nums = [3,5,9,15,10]
- Swap 10 and 15 because gcd(10,15) = 5. nums = [3,5,9,10,15]

Constraints:

  • 1 <= nums.length <= 3 * 104
  • 2 <= nums[i] <= 105

Solution: Union-Find

Let nums[j]’s target position be i. In order to put nums[j] to pos i by swapping. nums[i] and nums[j] must be in the same connected component. There is an edge between two numbers if they have gcd > 1.

We union two numbers if their have gcd > 1. However, it will be TLE if we do all pairs . Thus, for each number, we union it with its divisors instead.

Time complexity: O(n2) TLE -> O(sum(sqrt(nums[i]))) <= O(n*sqrt(m))
Space complexity: O(n)

C++