Press "Enter" to skip to content

Posts published in “Hashtable”

花花酱 LeetCode 1481. Least Number of Unique Integers after K Removals

Given an array of integers arr and an integer k. Find the least number of unique integers after removing exactly k elements.

Example 1:

Input: arr = [5,5,4], k = 1
Output: 1
Explanation: Remove the single 4, only 5 is left.

Example 2:

Input: arr = [4,3,1,1,3,3,2], k = 3
Output: 2
Explanation: Remove 4, 2 and either one of the two 1s or three 3s. 1 and 3 will be left.

Constraints:

  • 1 <= arr.length <= 10^5
  • 1 <= arr[i] <= 10^9
  • 0 <= k <= arr.length

Solution: Greedy

Count the frequency of each unique number. Sort by frequency, remove items with lowest frequency first.

Time complexity: O(nlogn)
Space complexity: O(n)

C++

花花酱 LeetCode 1461. Check If a String Contains All Binary Codes of Size K

Given a binary string s and an integer k.

Return True if any binary code of length k is a substring of s. Otherwise, return False.

Example 1:

Input: s = "00110110", k = 2
Output: true
Explanation: The binary codes of length 2 are "00", "01", "10" and "11". They can be all found as substrings at indicies 0, 1, 3 and 2 respectively.

Example 2:

Input: s = "00110", k = 2
Output: true

Example 3:

Input: s = "0110", k = 1
Output: true
Explanation: The binary codes of length 1 are "0" and "1", it is clear that both exist as a substring. 

Example 4:

Input: s = "0110", k = 2
Output: false
Explanation: The binary code "00" is of length 2 and doesn't exist in the array.

Example 5:

Input: s = "0000000001011100", k = 4
Output: false

Constraints:

  • 1 <= s.length <= 5 * 10^5
  • s consists of 0’s and 1’s only.
  • 1 <= k <= 20

Solution: Hashtable

Insert all possible substrings into a hashtable, the size of the hashtable should be 2^k.

Time complexity: O(n*k)
Space complexity: O(2^k*k) -> O(2^k)

std::string_view: 484 ms, 40.1MB
std::string 644 ms, 58.6MB

C++

花花酱 LeetCode 1452. People Whose List of Favorite Companies Is Not a Subset of Another List

Given the array favoriteCompanies where favoriteCompanies[i] is the list of favorites companies for the ith person (indexed from 0).

Return the indices of people whose list of favorite companies is not a subset of any other list of favorites companies. You must return the indices in increasing order.

Example 1:

Input: favoriteCompanies = [["leetcode","google","facebook"],["google","microsoft"],["google","facebook"],["google"],["amazon"]]
Output: [0,1,4] 
Explanation: 
Person with index=2 has favoriteCompanies[2]=["google","facebook"] which is a subset of favoriteCompanies[0]=["leetcode","google","facebook"] corresponding to the person with index 0. 
Person with index=3 has favoriteCompanies[3]=["google"] which is a subset of favoriteCompanies[0]=["leetcode","google","facebook"] and favoriteCompanies[1]=["google","microsoft"]. 
Other lists of favorite companies are not a subset of another list, therefore, the answer is [0,1,4].

Example 2:

Input: favoriteCompanies = [["leetcode","google","facebook"],["leetcode","amazon"],["facebook","google"]]
Output: [0,1] 
Explanation: In this case favoriteCompanies[2]=["facebook","google"] is a subset of favoriteCompanies[0]=["leetcode","google","facebook"], therefore, the answer is [0,1].

Example 3:

Input: favoriteCompanies = [["leetcode"],["google"],["facebook"],["amazon"]]
Output: [0,1,2,3]

Constraints:

  • 1 <= favoriteCompanies.length <= 100
  • 1 <= favoriteCompanies[i].length <= 500
  • 1 <= favoriteCompanies[i][j].length <= 20
  • All strings in favoriteCompanies[i] are distinct.
  • All lists of favorite companies are distinct, that is, If we sort alphabetically each list then favoriteCompanies[i] != favoriteCompanies[j].
  • All strings consist of lowercase English letters only.

Solution: Hashtable

Time complexity: O(n*n*m)
Space complexity: O(n*m)
where n is the # of people, m is the # of companies

C++

Use int as key to make it faster.

C++

花花酱 LeetCode 1436. Destination City

You are given the array paths, where paths[i] = [cityAi, cityBi] means there exists a direct path going from cityAi to cityBiReturn the destination city, that is, the city without any path outgoing to another city.

It is guaranteed that the graph of paths forms a line without any loop, therefore, there will be exactly one destination city.

Example 1:

Input: paths = [["London","New York"],["New York","Lima"],["Lima","Sao Paulo"]]
Output: "Sao Paulo" 
Explanation: Starting at "London" city you will reach "Sao Paulo" city which is the destination city. Your trip consist of: "London" -> "New York" -> "Lima" -> "Sao Paulo".

Example 2:

Input: paths = [["B","C"],["D","B"],["C","A"]]
Output: "A"
Explanation: All possible trips are: 
"D" -> "B" -> "C" -> "A". 
"B" -> "C" -> "A". 
"C" -> "A". 
"A". 
Clearly the destination city is "A".

Example 3:

Input: paths = [["A","Z"]]
Output: "Z"

Constraints:

  • 1 <= paths.length <= 100
  • paths[i].length == 2
  • 1 <= cityAi.length, cityBi.length <= 10
  • cityA!= cityBi
  • All strings consist of lowercase and uppercase English letters and the space character.

Solution: Count in / out degree for each node

Note: this is a more general solution to this type of problems.

Time complexity: O(n)
Space complexity: O(n)

Destination City: in_degree == 1 and out_degree == 0

C++

花花酱 LeetCode 1424. Diagonal Traverse II

Given a list of lists of integers, nums, return all elements of nums in diagonal order as shown in the below images.

Example 1:

Input: nums = [[1,2,3],[4,5,6],[7,8,9]]
Output: [1,4,2,7,5,3,8,6,9]

Example 2:

Input: nums = [[1,2,3,4,5],[6,7],[8],[9,10,11],[12,13,14,15,16]]
Output: [1,6,2,8,7,3,9,4,12,10,5,13,11,14,15,16]

Example 3:

Input: nums = [[1,2,3],[4],[5,6,7],[8],[9,10,11]]
Output: [1,4,2,5,3,8,6,9,7,10,11]

Example 4:

Input: nums = [[1,2,3,4,5,6]]
Output: [1,2,3,4,5,6]

Constraints:

  • 1 <= nums.length <= 10^5
  • 1 <= nums[i].length <= 10^5
  • 1 <= nums[i][j] <= 10^9
  • There at most 10^5 elements in nums.

Solution: Hashtable

Use diagonal index (i + j) as key.

Time complexity: O(n)
Space complexity: O(n)

C++

Python