Press "Enter" to skip to content

Posts published in “Hashtable”

花花酱 LeetCode 560. Subarray Sum Equals K



Given an array of integers and an integer k, you need to find the total number of continuous subarrays whose sum equals to k.

Example 1:

Input:nums = [1,1,1], k = 2
Output: 2


  1. The length of the array is in range [1, 20,000].
  2. The range of numbers in the array is [-1000, 1000] and the range of the integer k is [-1e7, 1e7].

Solution -1: Brute Force

For every pair of i,j, check sum(nums[i:j]) in O(j-i) = O(n)

Time complexity: O(n^3) TLE

Space complexity: O(1)

Solution 0: Brute Force + Prefix sun

Precompute the prefix sum and check sum of nums[i:j] in O(1)

Time complexity: O(n^2)

Space complexity: O(n)


Solution 1: Running Prefix sum

Keep tracking the prefix sums and their counts.

s -> count: how many arrays nums[0:j] (j < i) that has sum of s

cur_sum = sum(nums[0:i])

check how many arrays nums[0:j] (j < i) that has sum (cur_sum – k)

then there are the same number of arrays nums[j+1: i] that have sum k.

Time complexity: O(n)

Space complexity: O(n)



花花酱 LeetCode 554. Brick Wall



There is a brick wall in front of you. The wall is rectangular and has several rows of bricks. The bricks have the same height but different width. You want to draw a vertical line from the top to the bottom and cross the least bricks.

The brick wall is represented by a list of rows. Each row is a list of integers representing the width of each brick in this row from left to right.

If your line go through the edge of a brick, then the brick is not considered as crossed. You need to find out how to draw the line to cross the least bricks and return the number of crossed bricks.

You cannot draw a line just along one of the two vertical edges of the wall, in which case the line will obviously cross no bricks.


Output: 2


  1. The width sum of bricks in different rows are the same and won’t exceed INT_MAX.
  2. The number of bricks in each row is in range [1,10,000]. The height of wall is in range [1,10,000]. Total number of bricks of the wall won’t exceed 20,000.

Solution: HashTable

Count boundaries, cut at the location with most common boundaries.

Time complexity: O(|bricks|)

Space complexity: O(|bricks|)



花花酱 LeetCode 609. Find Duplicate File in System



Given a list of directory info including directory path, and all the files with contents in this directory, you need to find out all the groups of duplicate files in the file system in terms of their paths.

A group of duplicate files consists of at least two files that have exactly the same content.

A single directory info string in the input list has the following format:

"root/d1/d2/.../dm f1.txt(f1_content) f2.txt(f2_content) ... fn.txt(fn_content)"

It means there are n files (f1.txtf2.txt … fn.txt with content f1_contentf2_content … fn_content, respectively) in directory root/d1/d2/.../dm. Note that n >= 1 and m >= 0. If m = 0, it means the directory is just the root directory.

The output is a list of group of duplicate file paths. For each group, it contains all the file paths of the files that have the same content. A file path is a string that has the following format:


Example 1:

["root/a 1.txt(abcd) 2.txt(efgh)", "root/c 3.txt(abcd)", "root/c/d 4.txt(efgh)", "root 4.txt(efgh)"]


  1. No order is required for the final output.
  2. You may assume the directory name, file name and file content only has letters and digits, and the length of file content is in the range of [1,50].
  3. The number of files given is in the range of [1,20000].
  4. You may assume no files or directories share the same name in the same directory.
  5. You may assume each given directory info represents a unique directory. Directory path and file info are separated by a single blank space.

Follow-up beyond contest:

  1. Imagine you are given a real file system, how will you search files? DFS or BFS?
  2. If the file content is very large (GB level), how will you modify your solution?
  3. If you can only read the file by 1kb each time, how will you modify your solution?
  4. What is the time complexity of your modified solution? What is the most time-consuming part and memory consuming part of it? How to optimize?
  5. How to make sure the duplicated files you find are not false positive?

Solution: HashTable

Key: content, Value: Array of filenames

Time complexity: O(n)

Space complexity: O(n)



花花酱 LeetCode 594. Longest Harmonious Subsequence



We define a harmonious array is an array where the difference between its maximum value and its minimum value is exactly 1.

Now, given an integer array, you need to find the length of its longest harmonious subsequence among all its possible subsequences.

Example 1:

Input: [1,3,2,2,5,2,3,7]
Output: 5
Explanation: The longest harmonious subsequence is [3,2,2,2,3].

Note: The length of the input array will not exceed 20,000.

Solution1: HashTable

Time complexity: O(n)
Space complexity: O(n)



花花酱 LeetCode 383. Ransom Note



Given an arbitrary ransom note string and another string containing letters from all the magazines, write a function that will return true if the ransom note can be constructed from the magazines ; otherwise, it will return false.

Each letter in the magazine string can only be used once in your ransom note.

You may assume that both strings contain only lowercase letters.

canConstruct("a", "b") -> false
canConstruct("aa", "ab") -> false
canConstruct("aa", "aab") -> true

Solution: HashTable

Time complexity: O(n + m)

Space complexity: O(128)