Press "Enter" to skip to content

Posts published in “Stack”

花花酱 LeetCode 232. Implement Queue using Stacks

Implement the following operations of a queue using stacks.

  • push(x) — Push element x to the back of queue.
  • pop() — Removes the element from in front of queue.
  • peek() — Get the front element.
  • empty() — Return whether the queue is empty.

Example:

MyQueue queue = new MyQueue();

queue.push(1);
queue.push(2);  
queue.peek();  // returns 1
queue.pop();   // returns 1
queue.empty(); // returns false

Notes:

  • You must use only standard operations of a stack — which means only push to toppeek/pop from topsize, and is empty operations are valid.
  • Depending on your language, stack may not be supported natively. You may simulate a stack by using a list or deque (double-ended queue), as long as you use only standard operations of a stack.
  • You may assume that all operations are valid (for example, no pop or peek operations will be called on an empty queue).

Solution: Use two stacks

amortized cost: O(1)

C++

花花酱 LeetCode 150. Evaluate Reverse Polish Notation

Evaluate the value of an arithmetic expression in Reverse Polish Notation.

Valid operators are +-*/. Each operand may be an integer or another expression.

Note:

  • Division between two integers should truncate toward zero.
  • The given RPN expression is always valid. That means the expression would always evaluate to a result and there won’t be any divide by zero operation.

Example 1:

Input: ["2", "1", "+", "3", "*"]
Output: 9
Explanation: ((2 + 1) * 3) = 9

Example 2:

Input: ["4", "13", "5", "/", "+"]
Output: 6
Explanation: (4 + (13 / 5)) = 6

Example 3:

Input: ["10", "6", "9", "3", "+", "-11", "*", "/", "*", "17", "+", "5", "+"]
Output: 22
Explanation: 
  ((10 * (6 / ((9 + 3) * -11))) + 17) + 5
= ((10 * (6 / (12 * -11))) + 17) + 5
= ((10 * (6 / -132)) + 17) + 5
= ((10 * 0) + 17) + 5
= (0 + 17) + 5
= 17 + 5
= 22

Solution: Stack

Use a stack to store the operands, pop two whenever there is an operator, compute the result and push back to the stack.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 962. Maximum Width Ramp

Given an array A of integers, a ramp is a tuple (i, j) for which i < j and A[i] <= A[j].  The width of such a ramp is j - i.

Find the maximum width of a ramp in A.  If one doesn’t exist, return 0.

Example 1:

Input: [6,0,8,2,1,5] 
Output: 4
Explanation: The maximum width ramp is achieved at (i, j) = (1, 5): A[1] = 0 and A[5] = 5.

Example 2:

Input: [9,8,1,0,1,9,4,0,4,1] 
Output: 7
Explanation: The maximum width ramp is achieved at (i, j) = (2, 9): A[2] = 1 and A[9] = 1.

Note:

  1. 2 <= A.length <= 50000
  2. 0 <= A[i] <= 50000

Solution: Stack

  1. Using a stack to store start candidates’ (decreasing order) index
  2. Scan from right to left, compare the current number with the one on the top of the stack, pop if greater.

e.g.
A = [6,0,8,2,1,5]
stack = [0, 1] => [6, 0]
cur: A[5] = 5, stack.top = A[1] = 0, ramp = 5, stack.pop()
cur: A[4] = 1, stack.top = A[0] = 6
cur: A[3] = 2, stack.top = A[0] = 6
cur: A[2] = 8, stack.top = A[0] = 6, ramp = 2, stack.pop()
stack.isEmpty() => END

C++

Python3

花花酱 LeetCode 946. Validate Stack Sequences

Problem

Given two sequences pushed and popped with distinct values, return true if and only if this could have been the result of a sequence of push and pop operations on an initially empty stack.

Example 1:

Input: pushed = [1,2,3,4,5], popped = [4,5,3,2,1]
Output: true
Explanation: We might do the following sequence:
push(1), push(2), push(3), push(4), pop() -> 4,
push(5), pop() -> 5, pop() -> 3, pop() -> 2, pop() -> 1

Example 2:

Input: pushed = [1,2,3,4,5], popped = [4,3,5,1,2]
Output: false
Explanation: 1 cannot be popped before 2.

Note:

  1. 0 <= pushed.length == popped.length <= 1000
  2. 0 <= pushed[i], popped[i] < 1000
  3. pushed is a permutation of popped.
  4. pushed and popped have distinct values.

Solution: Simulation

Simulate the push/pop operation.

Push element from |pushed sequence| onto stack s one by one and pop when top of the stack s is equal the current element in the |popped sequence|.

Time complexity: O(n)

Space complexity: O(n)

C++

Python3

花花酱 LeetCode 32. Longest Valid Parentheses

Problem

Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

Example 1:

Input: "(()"
Output: 2
Explanation: The longest valid parentheses substring is "()"

Example 2:

Input: ")()())" Output: 4 Explanation: The longest valid parentheses substring is "()()"

Solution: Stack

Use a stack to track the index of all unmatched open parentheses.

Time complexity: O(n)

Space complexity: O(n)

C++

Python3

 

Related Problems