Return the number of permutations of 1 to n so that prime numbers are at prime indices (1-indexed.)

(Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.)

Since the answer may be large, return the answer modulo 10^9 + 7.

Example 1:

Input: n = 5
Output: 12
Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.


Example 2:

Input: n = 100
Output: 682289015


Constraints:

• 1 <= n <= 100

## Solution: Permutation

Count the number of primes in range [1, n], assuming there are p primes and n – p non-primes, we can permute each group separately.
ans = p! * (n – p)!

Time complexity: O(nsqrt(n))
Space complexity: O(1)

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website

Paypal
Venmo
huahualeetcode

## Be First to Comment

Mission News Theme by Compete Themes.