Press "Enter" to skip to content

Given an integer n, you must transform it into 0 using the following operations any number of times:

• Change the rightmost (0th) bit in the binary representation of n.
• Change the ith bit in the binary representation of n if the (i-1)th bit is set to 1 and the (i-2)th through 0th bits are set to 0.

Return the minimum number of operations to transform n into 0.

Example 1:

Input: n = 0
Output: 0


Example 2:

Input: n = 3
Output: 2
Explanation: The binary representation of 3 is "11".
"11" -> "01" with the 2nd operation since the 0th bit is 1.
"01" -> "00" with the 1st operation.


Example 3:

Input: n = 6
Output: 4
Explanation: The binary representation of 6 is "110".
"110" -> "010" with the 2nd operation since the 1st bit is 1 and 0th through 0th bits are 0.
"010" -> "011" with the 1st operation.
"011" -> "001" with the 2nd operation since the 0th bit is 1.
"001" -> "000" with the 1st operation.


Example 4:

Input: n = 9
Output: 14


Example 5:

Input: n = 333
Output: 393


Constraints:

• 0 <= n <= 109

## Solution 1: Graycode

Time complexity: O(logn)
Space complexity: O(1)

Ans is the order of n in graycode.

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website 