You are given an n x n
integer matrix grid
.
Generate an integer matrix maxLocal
of size (n - 2) x (n - 2)
such that:
maxLocal[i][j]
is equal to the largest value of the3 x 3
matrix ingrid
centered around rowi + 1
and columnj + 1
.
In other words, we want to find the largest value in every contiguous 3 x 3
matrix in grid
.
Return the generated matrix.
Example 1:

Input: grid = [[9,9,8,1],[5,6,2,6],[8,2,6,4],[6,2,2,2]] Output: [[9,9],[8,6]] Explanation: The diagram above shows the original matrix and the generated matrix. Notice that each value in the generated matrix corresponds to the largest value of a contiguous 3 x 3 matrix in grid.
Example 2:

Input: grid = [[1,1,1,1,1],[1,1,1,1,1],[1,1,2,1,1],[1,1,1,1,1],[1,1,1,1,1]] Output: [[2,2,2],[2,2,2],[2,2,2]] Explanation: Notice that the 2 is contained within every contiguous 3 x 3 matrix in grid.
Constraints:
n == grid.length == grid[i].length
3 <= n <= 100
1 <= grid[i][j] <= 100
Solution: Brute Force
Time complexity: O(n*n*9)
Space complexity: O(n*n)
C++
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
// Author: Huahua class Solution { public: vector<vector<int>> largestLocal(vector<vector<int>>& grid) { const int m = grid.size() - 2; vector<vector<int>> ans(m, vector<int>(m)); for (int i = 0; i < m; ++i) for (int j = 0; j < m; ++j) for (int dy = 0; dy <= 2; ++dy) for (int dx = 0; dx <= 2; ++dx) ans[i][j] = max(ans[i][j], grid[i + dy][j + dx]); return ans; } }; |
请尊重作者的劳动成果,转载请注明出处!花花保留对文章/视频的所有权利。
如果您喜欢这篇文章/视频,欢迎您捐赠花花。
If you like my articles / videos, donations are welcome.
Be First to Comment