Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1711. Count Good Meals

good meal is a meal that contains exactly two different food items with a sum of deliciousness equal to a power of two.

You can pick any two different foods to make a good meal.

Given an array of integers deliciousness where deliciousness[i] is the deliciousness of the i​​​​​​th​​​​​​​​ item of food, return the number of different good meals you can make from this list modulo 109 + 7.

Note that items with different indices are considered different even if they have the same deliciousness value.

Example 1:

Input: deliciousness = [1,3,5,7,9]
Output: 4
Explanation: The good meals are (1,3), (1,7), (3,5) and, (7,9).
Their respective sums are 4, 8, 8, and 16, all of which are powers of 2.

Example 2:

Input: deliciousness = [1,1,1,3,3,3,7]
Output: 15
Explanation: The good meals are (1,1) with 3 ways, (1,3) with 9 ways, and (1,7) with 3 ways.

Constraints:

  • 1 <= deliciousness.length <= 105
  • 0 <= deliciousness[i] <= 220

Solution: Hashtable

Same idea as LeetCode 1: Two Sum

Use a hashtable to store the occurrences of all the numbers added so far. For a new number x, check all possible 2^i – x. ans += freq[2^i – x] 0 <= i <= 21

Time complexity: O(22n)
Space complexity: O(n)

C++

Python3

花花酱 LeetCode 1710. Maximum Units on a Truck

You are assigned to put some amount of boxes onto one truck. You are given a 2D array boxTypes, where boxTypes[i] = [numberOfBoxesi, numberOfUnitsPerBoxi]:

  • numberOfBoxesi is the number of boxes of type i.
  • numberOfUnitsPerBoxiis the number of units in each box of the type i.

You are also given an integer truckSize, which is the maximum number of boxes that can be put on the truck. You can choose any boxes to put on the truck as long as the number of boxes does not exceed truckSize.

Return the maximum total number of units that can be put on the truck.

Example 1:

Input: boxTypes = [[1,3],[2,2],[3,1]], truckSize = 4
Output: 8
Explanation: There are:
- 1 box of the first type that contains 3 units.
- 2 boxes of the second type that contain 2 units each.
- 3 boxes of the third type that contain 1 unit each.
You can take all the boxes of the first and second types, and one box of the third type.
The total number of units will be = (1 * 3) + (2 * 2) + (1 * 1) = 8.

Example 2:

Input: boxTypes = [[5,10],[2,5],[4,7],[3,9]], truckSize = 10
Output: 91

Constraints:

  • 1 <= boxTypes.length <= 1000
  • 1 <= numberOfBoxesi, numberOfUnitsPerBoxi <= 1000
  • 1 <= truckSize <= 106

Solution: Greedy

Sort by unit in descending order.

Time complexity: O(nlogn)
Space complexity: O(1)

C++

花花酱 LeetCode 1707. Maximum XOR With an Element From Array

You are given an array nums consisting of non-negative integers. You are also given a queries array, where queries[i] = [xi, mi].

The answer to the ith query is the maximum bitwise XOR value of xi and any element of nums that does not exceed mi. In other words, the answer is max(nums[j] XOR xi) for all j such that nums[j] <= mi. If all elements in nums are larger than mi, then the answer is -1.

Return an integer array answer where answer.length == queries.length and answer[i] is the answer to the ith query.

Example 1:

Input: nums = [0,1,2,3,4], queries = [[3,1],[1,3],[5,6]]
Output: [3,3,7]
Explanation:
1) 0 and 1 are the only two integers not greater than 1. 0 XOR 3 = 3 and 1 XOR 3 = 2. The larger of the two is 3.
2) 1 XOR 2 = 3.
3) 5 XOR 2 = 7.

Example 2:

Input: nums = [5,2,4,6,6,3], queries = [[12,4],[8,1],[6,3]]
Output: [15,-1,5]

Constraints:

  • 1 <= nums.length, queries.length <= 105
  • queries[i].length == 2
  • 0 <= nums[j], xi, mi <= 109

Solution: Trie on the fly

Similar idea to https://zxi.mytechroad.com/blog/trie/leetcode-421-maximum-xor-of-two-numbers-in-an-array/

We can build the trie on the fly by sorting nums in ascending order and queries by its limit, insert nums into the trie up the limit.

Time complexity: O(nlogn + QlogQ)
Space complexity: O(n)

C++

花花酱 LeetCode 421. Maximum XOR of Two Numbers in an Array

Given an integer array nums, return the maximum result of nums[i] XOR nums[j], where 0 ≤ i ≤ j < n.

Follow up: Could you do this in O(n) runtime?

Example 1:

Input: nums = [3,10,5,25,2,8]
Output: 28
Explanation: The maximum result is 5 XOR 25 = 28.

Example 2:

Input: nums = [0]
Output: 0

Example 3:

Input: nums = [2,4]
Output: 6

Example 4:

Input: nums = [8,10,2]
Output: 10

Example 5:

Input: nums = [14,70,53,83,49,91,36,80,92,51,66,70]
Output: 127

Constraints:

  • 1 <= nums.length <= 2 * 104
  • 0 <= nums[i] <= 231 - 1

Solution: Trie

Time complexity: O(31*2*n)
Space complexity: O(31*2*n)

C++