Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1437. Check If All 1’s Are at Least Length K Places Away

Given an array nums of 0s and 1s and an integer k, return True if all 1’s are at least k places away from each other, otherwise return False.

Example 1:

Input: nums = [1,0,0,0,1,0,0,1], k = 2
Output: true
Explanation: Each of the 1s are at least 2 places away from each other.

Example 2:

Input: nums = [1,0,0,1,0,1], k = 2
Output: false
Explanation: The second 1 and third 1 are only one apart from each other.

Example 3:

Input: nums = [1,1,1,1,1], k = 0
Output: true

Example 4:

Input: nums = [0,1,0,1], k = 1
Output: true

Constraints:

  • 1 <= nums.length <= 10^5
  • 0 <= k <= nums.length
  • nums[i] is 0 or 1

Solution: Scan the array

Only need to check adjacent ones. This problem should be easy instead of medium.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1436. Destination City

You are given the array paths, where paths[i] = [cityAi, cityBi] means there exists a direct path going from cityAi to cityBiReturn the destination city, that is, the city without any path outgoing to another city.

It is guaranteed that the graph of paths forms a line without any loop, therefore, there will be exactly one destination city.

Example 1:

Input: paths = [["London","New York"],["New York","Lima"],["Lima","Sao Paulo"]]
Output: "Sao Paulo" 
Explanation: Starting at "London" city you will reach "Sao Paulo" city which is the destination city. Your trip consist of: "London" -> "New York" -> "Lima" -> "Sao Paulo".

Example 2:

Input: paths = [["B","C"],["D","B"],["C","A"]]
Output: "A"
Explanation: All possible trips are: 
"D" -> "B" -> "C" -> "A". 
"B" -> "C" -> "A". 
"C" -> "A". 
"A". 
Clearly the destination city is "A".

Example 3:

Input: paths = [["A","Z"]]
Output: "Z"

Constraints:

  • 1 <= paths.length <= 100
  • paths[i].length == 2
  • 1 <= cityAi.length, cityBi.length <= 10
  • cityA!= cityBi
  • All strings consist of lowercase and uppercase English letters and the space character.

Solution: Count in / out degree for each node

Note: this is a more general solution to this type of problems.

Time complexity: O(n)
Space complexity: O(n)

Destination City: in_degree == 1 and out_degree == 0

C++

花花酱 LeetCode 1434. Number of Ways to Wear Different Hats to Each Other

There are n people and 40 types of hats labeled from 1 to 40.

Given a list of list of integers hats, where hats[i] is a list of all hats preferred by the i-th person.

Return the number of ways that the n people wear different hats to each other.

Since the answer may be too large, return it modulo 10^9 + 7.

Example 1:

Input: hats = [[3,4],[4,5],[5]]
Output: 1
Explanation: There is only one way to choose hats given the conditions. 
First person choose hat 3, Second person choose hat 4 and last one hat 5.

Example 2:

Input: hats = [[3,5,1],[3,5]]
Output: 4
Explanation: There are 4 ways to choose hats
(3,5), (5,3), (1,3) and (1,5)

Example 3:

Input: hats = [[1,2,3,4],[1,2,3,4],[1,2,3,4],[1,2,3,4]]
Output: 24
Explanation: Each person can choose hats labeled from 1 to 4.
Number of Permutations of (1,2,3,4) = 24.

Example 4:

Input: hats = [[1,2,3],[2,3,5,6],[1,3,7,9],[1,8,9],[2,5,7]]
Output: 111

Constraints:

  • n == hats.length
  • 1 <= n <= 10
  • 1 <= hats[i].length <= 40
  • 1 <= hats[i][j] <= 40
  • hats[i] contains a list of unique integers.

Solution: DP

dp[i][j] := # of ways using first i hats, j is the bit mask of people wearing hats.

e.g. dp[3][101] == # of ways using first 3 hats that people 1 and 3 are wearing hats.

init dp[0][0] = 1

dp[i][mask | (1 << p)] = dp[i-1][mask | (1 << p)] + dp[i-1][mask], where people p prefers hats i.

ans: dp[nHat][1…1]

Time complexity: O(2^n * h * n)
Space complexity: O(2^n * h) -> O(2^n)

C++

O(2^n) memory

C++

LeetCode 1433. Check If a String Can Break Another String

Given two strings: s1 and s2 with the same size, check if some permutation of string s1 can break some permutation of string s2 or vice-versa (in other words s2 can break s1).

A string x can break string y (both of size n) if x[i] >= y[i] (in alphabetical order) for all i between 0 and n-1.

Example 1:

Input: s1 = "abc", s2 = "xya"
Output: true
Explanation: "ayx" is a permutation of s2="xya" which can break to string "abc" which is a permutation of s1="abc".

Example 2:

Input: s1 = "abe", s2 = "acd"
Output: false 
Explanation: All permutations for s1="abe" are: "abe", "aeb", "bae", "bea", "eab" and "eba" and all permutation for s2="acd" are: "acd", "adc", "cad", "cda", "dac" and "dca". However, there is not any permutation from s1 which can break some permutation from s2 and vice-versa.

Example 3:

Input: s1 = "leetcodee", s2 = "interview"
Output: true

Constraints:

  • s1.length == n
  • s2.length == n
  • 1 <= n <= 10^5
  • All strings consist of lowercase English letters.

Solution 1: Sort and compare

Time complexity: O(nlogn)
Space complexity: O(1)

C++

Solution 2: Counting Sort

The cumulative number of elements must be monotonic e.g. t1 >= t2 or t2 >= t1 for all the letters.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1432. Max Difference You Can Get From Changing an Integer

You are given an integer num. You will apply the following steps exactly two times:

  • Pick a digit x (0 <= x <= 9).
  • Pick another digit y (0 <= y <= 9). The digit y can be equal to x.
  • Replace all the occurrences of x in the decimal representation of num by y.
  • The new integer cannot have any leading zeros, also the new integer cannot be 0.

Let a and b be the results of applying the operations to num the first and second times, respectively.

Return the max difference between a and b.

Example 1:

Input: num = 555
Output: 888
Explanation: The first time pick x = 5 and y = 9 and store the new integer in a.
The second time pick x = 5 and y = 1 and store the new integer in b.
We have now a = 999 and b = 111 and max difference = 888

Example 2:

Input: num = 9
Output: 8
Explanation: The first time pick x = 9 and y = 9 and store the new integer in a.
The second time pick x = 9 and y = 1 and store the new integer in b.
We have now a = 9 and b = 1 and max difference = 8

Example 3:

Input: num = 123456
Output: 820000

Example 4:

Input: num = 10000
Output: 80000

Example 5:

Input: num = 9288
Output: 8700

Constraints:

  • 1 <= num <= 10^8

Solution 1: Brute Force

Try all possible pairs of (x, y)

Time complexity: O(10*10*logn)
Space complexity: O(logn)

C++

Solution 2: Greedy

Maximize A and Minimize B

A – B will the answer.

To maximize A, find the left most digit that is not 9, replace that digit with 9.
e.g. 121 => 919
e.g. 9981 => 9991
To minimize B, fin the left most digit that is not 1 or 0, replace that digit with 0 (if not the first one) or 1.
e.g. 1024 -> 1004
e.g. 2024 -> 1014

Time complexity: O(logn)
Space complexity: O(logn)

C++