Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1415. The k-th Lexicographical String of All Happy Strings of Length n

happy string is a string that:

  • consists only of letters of the set ['a', 'b', 'c'].
  • s[i] != s[i + 1] for all values of i from 1 to s.length - 1 (string is 1-indexed).

For example, strings “abc”, “ac”, “b” and “abcbabcbcb” are all happy strings and strings “aa”, “baa” and “ababbc” are not happy strings.

Given two integers n and k, consider a list of all happy strings of length n sorted in lexicographical order.

Return the kth string of this list or return an empty string if there are less than k happy strings of length n.

Example 1:

Input: n = 1, k = 3
Output: "c"
Explanation: The list ["a", "b", "c"] contains all happy strings of length 1. The third string is "c".

Example 2:

Input: n = 1, k = 4
Output: ""
Explanation: There are only 3 happy strings of length 1.

Example 3:

Input: n = 3, k = 9
Output: "cab"
Explanation: There are 12 different happy string of length 3 ["aba", "abc", "aca", "acb", "bab", "bac", "bca", "bcb", "cab", "cac", "cba", "cbc"]. You will find the 9th string = "cab"

Example 4:

Input: n = 2, k = 7
Output: ""

Example 5:

Input: n = 10, k = 100
Output: "abacbabacb"

Constraints:

  • 1 <= n <= 10
  • 1 <= k <= 100

Solution: DFS

Generate the happy strings in lexical order, store the k-th one.
Time complexity: O(n + k)
Space complexity: O(n)

C++

花花酱 LeetCode 1414. Find the Minimum Number of Fibonacci Numbers Whose Sum Is K

Given the number kreturn the minimum number of Fibonacci numbers whose sum is equal to k, whether a Fibonacci number could be used multiple times.

The Fibonacci numbers are defined as:

  • F1 = 1
  • F2 = 1
  • Fn = Fn-1 + Fn-2 , for n > 2.

It is guaranteed that for the given constraints we can always find such fibonacci numbers that sum k.

Example 1:

Input: k = 7
Output: 2 
Explanation: The Fibonacci numbers are: 1, 1, 2, 3, 5, 8, 13, ... 
For k = 7 we can use 2 + 5 = 7.

Example 2:

Input: k = 10
Output: 2 
Explanation: For k = 10 we can use 2 + 8 = 10.

Example 3:

Input: k = 19
Output: 3 
Explanation: For k = 19 we can use 1 + 5 + 13 = 19.

Constraints:

  • 1 <= k <= 10^9

Solution: Greedy

Find the largest fibonacci numbers x that x <= k, ans = 1 + find(k – x)

Time complexity: O(logk^2) -> O(logk)
Space complexity: O(logk) -> O(1)

Recursive

C++

Iterative

C++

花花酱 LeetCode 1413. Minimum Value to Get Positive Step by Step Sum

Given an array of integers nums, you start with an initial positive value startValue.

In each iteration, you calculate the step by step sum of startValue plus elements in nums (from left to right).

Return the minimum positive value of startValue such that the step by step sum is never less than 1.

Example 1:

Input: nums = [-3,2,-3,4,2]
Output: 5
Explanation: If you choose startValue = 4, in the third iteration your step by step sum is less than 1.
                step by step sum
                startValue = 4 | startValue = 5 | nums
                  (4 -3 ) = 1  | (5 -3 ) = 2    |  -3
                  (1 +2 ) = 3  | (2 +2 ) = 4    |   2
                  (3 -3 ) = 0  | (4 -3 ) = 1    |  -3
                  (0 +4 ) = 4  | (1 +4 ) = 5    |   4
                  (4 +2 ) = 6  | (5 +2 ) = 7    |   2

Example 2:

Input: nums = [1,2]
Output: 1
Explanation: Minimum start value should be positive. 

Example 3:

Input: nums = [1,-2,-3]
Output: 5

Constraints:

  • 1 <= nums.length <= 100
  • -100 <= nums[i] <= 100

Solution: Prefix sum

Find the minimum prefix sum, ans = – min(prefix_sum, 0) + 1

Time complexity: O(n)
Space complexity: O(1)

C++

Fast Power for DP SP20

Iterative DP usually takes O(n) to compute dp[n] from dp[0], we could do better if the problem can be written as matrix multiplication. With fast power, dp[n] can be computed in O(logn)

花花酱 LeetCode 1411. Number of Ways to Paint N × 3 Grid

You have a grid of size n x 3 and you want to paint each cell of the grid with exactly one of the three colours: RedYellow or Green while making sure that no two adjacent cells have the same colour (i.e no two cells that share vertical or horizontal sides have the same colour).

You are given n the number of rows of the grid.

Return the number of ways you can paint this grid. As the answer may grow large, the answer must be computed modulo 10^9 + 7.

Example 1:

Input: n = 1
Output: 12
Explanation: There are 12 possible way to paint the grid as shown:

Example 2:

Input: n = 2
Output: 54

Example 3:

Input: n = 3
Output: 246

Example 4:

Input: n = 7
Output: 106494

Example 5:

Input: n = 5000
Output: 30228214

Constraints:

  • n == grid.length
  • grid[i].length == 3
  • 1 <= n <= 5000

Solution: DP

dp[i][0] := # of ways to paint i rows with 2 different colors at the i-th row
dp[i][1] := # of ways to paint i rows with 3 different colors at the i-th row
dp[1][0] = dp[1][1] = 6
dp[i][0] = dp[i-1][0] * 3 + dp[i-1][1] * 2
dp[i][1] = dp[i-1][0] * 2 + dp[i-1][1] * 2

Time complexity: O(n)
Space complexity: O(n)

C++

Python3

Solution 2: DP w/ Matrix Chain Multiplication

ans = {6, 6} * {{3, 2}, {2,2}} ^ (n-1)

Time complexity: O(logn)
Space complexity: O(1)

C++