Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1899. Merge Triplets to Form Target Triplet

triplet is an array of three integers. You are given a 2D integer array triplets, where triplets[i] = [ai, bi, ci] describes the ith triplet. You are also given an integer array target = [x, y, z] that describes the triplet you want to obtain.

To obtain target, you may apply the following operation on triplets any number of times (possibly zero):

  • Choose two indices (0-indexedi and j (i != j) and update triplets[j] to become [max(ai, aj), max(bi, bj), max(ci, cj)].
    • For example, if triplets[i] = [2, 5, 3] and triplets[j] = [1, 7, 5]triplets[j] will be updated to [max(2, 1), max(5, 7), max(3, 5)] = [2, 7, 5].

Return true if it is possible to obtain the target triplet [x, y, z] as an element of triplets, or false otherwise.

Example 1:

Input: triplets = [[2,5,3],[1,8,4],[1,7,5]], target = [2,7,5]
Output: true
Explanation: Perform the following operations:
- Choose the first and last triplets [[2,5,3],[1,8,4],[1,7,5]]. Update the last triplet to be [max(2,1), max(5,7), max(3,5)] = [2,7,5]. triplets = [[2,5,3],[1,8,4],[2,7,5]]
The target triplet [2,7,5] is now an element of triplets.

Example 2:

Input: triplets = [[1,3,4],[2,5,8]], target = [2,5,8]
Output: true
Explanation: The target triplet [2,5,8] is already an element of triplets.

Example 3:

Input: triplets = [[2,5,3],[2,3,4],[1,2,5],[5,2,3]], target = [5,5,5]
Output: true
Explanation: Perform the following operations:
- Choose the first and third triplets [[2,5,3],[2,3,4],[1,2,5],[5,2,3]]. Update the third triplet to be [max(2,1), max(5,2), max(3,5)] = [2,5,5]. triplets = [[2,5,3],[2,3,4],[2,5,5],[5,2,3]].
- Choose the third and fourth triplets [[2,5,3],[2,3,4],[2,5,5],[5,2,3]]. Update the fourth triplet to be [max(2,5), max(5,2), max(5,3)] = [5,5,5]. triplets = [[2,5,3],[2,3,4],[2,5,5],[5,5,5]].
The target triplet [5,5,5] is now an element of triplets.

Example 4:

Input: triplets = [[3,4,5],[4,5,6]], target = [3,2,5]
Output: false
Explanation: It is impossible to have [3,2,5] as an element because there is no 2 in any of the triplets.

Constraints:

  • 1 <= triplets.length <= 105
  • triplets[i].length == target.length == 3
  • 1 <= ai, bi, ci, x, y, z <= 1000

Solution: Greedy

Exclude those bad ones (whose values are greater than x, y, z), check the max value for each dimension or whether there is x, y, z for each dimension.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1898. Maximum Number of Removable Characters

You are given two strings s and p where p is a subsequence of s. You are also given a distinct 0-indexed integer array removable containing a subset of indices of s (s is also 0-indexed).

You want to choose an integer k (0 <= k <= removable.length) such that, after removing k characters from s using the first k indices in removablep is still a subsequence of s. More formally, you will mark the character at s[removable[i]] for each 0 <= i < k, then remove all marked characters and check if p is still a subsequence.

Return the maximum k you can choose such that p is still a subsequence of s after the removals.

subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.

Example 1:

Input: s = "abcacb", p = "ab", removable = [3,1,0]
Output: 2
Explanation: After removing the characters at indices 3 and 1, "abcacb" becomes "accb".
"ab" is a subsequence of "accb".
If we remove the characters at indices 3, 1, and 0, "abcacb" becomes "ccb", and "ab" is no longer a subsequence.
Hence, the maximum k is 2.

Example 2:

Input: s = "abcbddddd", p = "abcd", removable = [3,2,1,4,5,6]
Output: 1
Explanation: After removing the character at index 3, "abcbddddd" becomes "abcddddd".
"abcd" is a subsequence of "abcddddd".

Example 3:

Input: s = "abcab", p = "abc", removable = [0,1,2,3,4]
Output: 0
Explanation: If you remove the first index in the array removable, "abc" is no longer a subsequence.

Constraints:

  • 1 <= p.length <= s.length <= 105
  • 0 <= removable.length < s.length
  • 0 <= removable[i] < s.length
  • p is a subsequence of s.
  • s and p both consist of lowercase English letters.
  • The elements in removable are distinct.

Solution: Binary Search + Two Pointers

If we don’t remove any thing, p is a subseq of s, as we keep removing, at some point L, p is no longer a subseq of s. e.g [0:True, 1: True, …, L – 1: True, L: False, L+1: False, …, m:False], this array is monotonic. We can use binary search to find the smallest L such that p is no long a subseq of s. Ans = L – 1.

For each guess, we can use two pointers to check whether p is subseq of removed(s) in O(n).

Time complexity: O(nlogn)
Space complexity: O(n)

C++

花花酱 LeetCode 1897. Redistribute Characters to Make All Strings Equal

You are given an array of strings words (0-indexed).

In one operation, pick two distinct indices i and j, where words[i] is a non-empty string, and move any character from words[i] to any position in words[j].

Return true if you can make every string in words equal using any number of operations, and false otherwise.

Example 1:

Input: words = ["abc","aabc","bc"]
Output: true
Explanation: Move the first 'a' in words[1] to the front of words[2],
to make words[1] = "abc" and words[2] = "abc".
All the strings are now equal to "abc", so return true.

Example 2:

Input: words = ["ab","a"]
Output: false
Explanation: It is impossible to make all the strings equal using the operation.

Constraints:

  • 1 <= words.length <= 100
  • 1 <= words[i].length <= 100
  • words[i] consists of lowercase English letters.

Solution: Hashtable

Count the frequency of each character, it must be a multiplier of n such that we can evenly distribute it to all the words.
e.g. n = 3, a = 9, b = 6, c = 3, each word will be “aaabbc”.

Time complexity: O(n)
Space complexity: O(1)

C++

Python3 one-liner

花花酱 LeetCode 1896. Minimum Cost to Change the Final Value of Expression

You are given a valid boolean expression as a string expression consisting of the characters '1','0','&' (bitwise AND operator),'|' (bitwise OR operator),'(', and ')'.

  • For example, "()1|1" and "(1)&()" are not valid while "1""(((1))|(0))", and "1|(0&(1))" are valid expressions.

Return the minimum cost to change the final value of the expression.

  • For example, if expression = "1|1|(0&0)&1", its value is 1|1|(0&0)&1 = 1|1|0&1 = 1|0&1 = 1&1 = 1. We want to apply operations so that the new expression evaluates to 0.

The cost of changing the final value of an expression is the number of operations performed on the expression. The types of operations are described as follows:

  • Turn a '1' into a '0'.
  • Turn a '0' into a '1'.
  • Turn a '&' into a '|'.
  • Turn a '|' into a '&'.

Note: '&' does not take precedence over '|' in the order of calculation. Evaluate parentheses first, then in left-to-right order.

Example 1:

Input: expression = "1&(0|1)"
Output: 1
Explanation: We can turn "1&(0|1)" into "1&(0&1)" by changing the '|' to a '&' using 1 operation.
The new expression evaluates to 0. 

Example 2:

Example 3:

Input: expression = "(0|(1|0&1))"
Output: 1
Explanation: We can turn "(0|(1|0&1))" into "(0|(0|0&1))" using 1 operation.
The new expression evaluates to 0.

Constraints:

  • 1 <= expression.length <= 105
  • expression only contains '1','0','&','|','(', and ')'
  • All parentheses are properly matched.
  • There will be no empty parentheses (i.e: "()" is not a substring of expression).

Solution: DP, Recursion / Simulation w/ Stack

For each expression, stores the min cost to change value to 0 and 1.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1895. Largest Magic Square

k x k magic square is a k x k grid filled with integers such that every row sum, every column sum, and both diagonal sums are all equal. The integers in the magic square do not have to be distinct. Every 1 x 1 grid is trivially a magic square.

Given an m x n integer grid, return the size (i.e., the side length k) of the largest magic square that can be found within this grid.

Example 1:

Input: grid = [[7,1,4,5,6],[2,5,1,6,4],[1,5,4,3,2],[1,2,7,3,4]]
Output: 3
Explanation: The largest magic square has a size of 3.
Every row sum, column sum, and diagonal sum of this magic square is equal to 12.
- Row sums: 5+1+6 = 5+4+3 = 2+7+3 = 12
- Column sums: 5+5+2 = 1+4+7 = 6+3+3 = 12
- Diagonal sums: 5+4+3 = 6+4+2 = 12

Example 2:

Input: grid = [[5,1,3,1],[9,3,3,1],[1,3,3,8]]
Output: 2

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 50
  • 1 <= grid[i][j] <= 106

Solution: Brute Force w/ Prefix Sum

Compute the prefix sum for each row and each column.

And check all possible squares.

Time complexity: O(m*n*min(m,n)2)
Space complexity: O(m*n)

C++