Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1458. Max Dot Product of Two Subsequences

Given two arrays nums1 and nums2.

Return the maximum dot product between non-empty subsequences of nums1 and nums2 with the same length.

A subsequence of a array is a new array which is formed from the original array by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, [2,3,5] is a subsequence of [1,2,3,4,5] while [1,5,3] is not).

Example 1:

Input: nums1 = [2,1,-2,5], nums2 = [3,0,-6]
Output: 18
Explanation: Take subsequence [2,-2] from nums1 and subsequence [3,-6] from nums2.
Their dot product is (2*3 + (-2)*(-6)) = 18.

Example 2:

Input: nums1 = [3,-2], nums2 = [2,-6,7]
Output: 21
Explanation: Take subsequence [3] from nums1 and subsequence [7] from nums2.
Their dot product is (3*7) = 21.

Example 3:

Input: nums1 = [-1,-1], nums2 = [1,1]
Output: -1
Explanation: Take subsequence [-1] from nums1 and subsequence [1] from nums2.
Their dot product is -1.

Constraints:

  • 1 <= nums1.length, nums2.length <= 500
  • -1000 <= nums1[i], nums2[i] <= 1000

Solution: DP

dp[i][j] := max product of nums1[0~i], nums2[0~j].

dp[i][j] = max(dp[i-1][j], dp[i][j -1], max(0, dp[i-1][j-1]) + nums1[i]*nums2[j])

Time complexity: O(n1*n2)
Space complexity: O(n1*n2)

C++

C++

花花酱 LeetCode 1457. Pseudo-Palindromic Paths in a Binary Tree

Given a binary tree where node values are digits from 1 to 9. A path in the binary tree is said to be pseudo-palindromic if at least one permutation of the node values in the path is a palindrome.

Return the number of pseudo-palindromic paths going from the root node to leaf nodes.

Example 1:

Input: root = [2,3,1,3,1,null,1]
Output: 2 
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the red path [2,3,3], the green path [2,1,1], and the path [2,3,1]. Among these paths only red path and green path are pseudo-palindromic paths since the red path [2,3,3] can be rearranged in [3,2,3] (palindrome) and the green path [2,1,1] can be rearranged in [1,2,1] (palindrome).

Example 2:

Input: root = [2,1,1,1,3,null,null,null,null,null,1]
Output: 1 
Explanation: The figure above represents the given binary tree. There are three paths going from the root node to leaf nodes: the green path [2,1,1], the path [2,1,3,1], and the path [2,1]. Among these paths only the green path is pseudo-palindromic since [2,1,1] can be rearranged in [1,2,1] (palindrome).

Example 3:

Input: root = [9]
Output: 1

Constraints:

  • The given binary tree will have between 1 and 10^5 nodes.
  • Node values are digits from 1 to 9.

Solution: Counting

At most one number can occur odd times.

Time complexity: O(n)
Space complexity: O(n) / stack size

C++

Use a binary string to represent occurrences of each number (even: 0 / odd: 1), we can use xor to flip the bit.

C++

花花酱 LeetCode 1456. Maximum Number of Vowels in a Substring of Given Length

Given a string s and an integer k.

Return the maximum number of vowel letters in any substring of s with length k.

Vowel letters in English are (a, e, i, o, u).

Example 1:

Input: s = "abciiidef", k = 3
Output: 3
Explanation: The substring "iii" contains 3 vowel letters.

Example 2:

Input: s = "aeiou", k = 2
Output: 2
Explanation: Any substring of length 2 contains 2 vowels.

Example 3:

Input: s = "leetcode", k = 3
Output: 2
Explanation: "lee", "eet" and "ode" contain 2 vowels.

Example 4:

Input: s = "rhythms", k = 4
Output: 0
Explanation: We can see that s doesn't have any vowel letters.

Example 5:

Input: s = "tryhard", k = 4
Output: 1

Constraints:

  • 1 <= s.length <= 10^5
  • s consists of lowercase English letters.
  • 1 <= k <= s.length

Solution: Sliding Window

Keep tracking the number of vows in a window of size k.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1455. Check If a Word Occurs As a Prefix of Any Word in a Sentence

Given a sentence that consists of some words separated by a single space, and a searchWord.

You have to check if searchWord is a prefix of any word in sentence.

Return the index of the word in sentence where searchWord is a prefix of this word (1-indexed).

If searchWord is a prefix of more than one word, return the index of the first word (minimum index). If there is no such word return -1.

prefix of a string S is any leading contiguous substring of S.

Example 1:

Input: sentence = "i love eating burger", searchWord = "burg"
Output: 4
Explanation: "burg" is prefix of "burger" which is the 4th word in the sentence.

Example 2:

Input: sentence = "this problem is an easy problem", searchWord = "pro"
Output: 2
Explanation: "pro" is prefix of "problem" which is the 2nd and the 6th word in the sentence, but we return 2 as it's the minimal index.

Example 3:

Input: sentence = "i am tired", searchWord = "you"
Output: -1
Explanation: "you" is not a prefix of any word in the sentence.

Example 4:

Input: sentence = "i use triple pillow", searchWord = "pill"
Output: 4

Example 5:

Input: sentence = "hello from the other side", searchWord = "they"
Output: -1

Constraints:

  • 1 <= sentence.length <= 100
  • 1 <= searchWord.length <= 10
  • sentence consists of lowercase English letters and spaces.
  • searchWord consists of lowercase English letters.

Solution 1: Brute Force

Time complexity: O(n)
Space complexity: O(1)

C++

f-String in Python3

Example code