Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1547. Minimum Cost to Cut a Stick

Given a wooden stick of length n units. The stick is labelled from 0 to n. For example, a stick of length 6 is labelled as follows:

Given an integer array cuts where cuts[i] denotes a position you should perform a cut at.

You should perform the cuts in order, you can change the order of the cuts as you wish.

The cost of one cut is the length of the stick to be cut, the total cost is the sum of costs of all cuts. When you cut a stick, it will be split into two smaller sticks (i.e. the sum of their lengths is the length of the stick before the cut). Please refer to the first example for a better explanation.

Return the minimum total cost of the cuts.

Example 1:

Input: n = 7, cuts = [1,3,4,5]
Output: 16
Explanation: Using cuts order = [1, 3, 4, 5] as in the input leads to the following scenario:

The first cut is done to a rod of length 7 so the cost is 7. The second cut is done to a rod of length 6 (i.e. the second part of the first cut), the third is done to a rod of length 4 and the last cut is to a rod of length 3. The total cost is 7 + 6 + 4 + 3 = 20.
Rearranging the cuts to be [3, 5, 1, 4] for example will lead to a scenario with total cost = 16 (as shown in the example photo 7 + 4 + 3 + 2 = 16).

Example 2:

Input: n = 9, cuts = [5,6,1,4,2]
Output: 22
Explanation: If you try the given cuts ordering the cost will be 25.
There are much ordering with total cost <= 25, for example, the order [4, 6, 5, 2, 1] has total cost = 22 which is the minimum possible.

Constraints:

  • 2 <= n <= 10^6
  • 1 <= cuts.length <= min(n - 1, 100)
  • 1 <= cuts[i] <= n - 1
  • All the integers in cuts array are distinct.

Solution: Range DP

dp[i][j] := min cost to finish the i-th cuts to the j-th (in sorted order)
dp[i][j] = r – l + min(dp[i][k – 1], dp[k + 1][j]) # [l, r] is the current stick range.

Time complexity: O(n^3)
Space complexity: O(n^2)

C++

Java

Python3

花花酱 LeetCode 1546. Maximum Number of Non-Overlapping Subarrays With Sum Equals Target

Given an array nums and an integer target.

Return the maximum number of non-empty non-overlapping subarrays such that the sum of values in each subarray is equal to target.

Example 1:

Input: nums = [1,1,1,1,1], target = 2
Output: 2
Explanation: There are 2 non-overlapping subarrays [1,1,1,1,1] with sum equals to target(2).

Example 2:

Input: nums = [-1,3,5,1,4,2,-9], target = 6
Output: 2
Explanation: There are 3 subarrays with sum equal to 6.
([5,1], [4,2], [3,5,1,4,2,-9]) but only the first 2 are non-overlapping.

Example 3:

Input: nums = [-2,6,6,3,5,4,1,2,8], target = 10
Output: 3

Example 4:

Input: nums = [0,0,0], target = 0
Output: 3

Constraints:

  • 1 <= nums.length <= 10^5
  • -10^4 <= nums[i] <= 10^4
  • 0 <= target <= 10^6

Solution: Prefix Sum + DP

Use a hashmap index to record the last index when a given prefix sum occurs.
dp[i] := max # of non-overlapping subarrays of nums[0~i], nums[i] is not required to be included.
dp[i+1] = max(dp[i], // skip nums[i]
dp[index[sum – target] + 1] + 1) // use nums[i] to form a new subarray
ans = dp[n]

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 1545. Find Kth Bit in Nth Binary String

Given two positive integers n and k, the binary string  Sn is formed as follows:

  • S1 = "0"
  • Si = Si-1 + "1" + reverse(invert(Si-1)) for i > 1

Where + denotes the concatenation operation, reverse(x) returns the reversed string x, and invert(x) inverts all the bits in x (0 changes to 1 and 1 changes to 0).

For example, the first 4 strings in the above sequence are:

  • S= "0"
  • S= "011"
  • S= "0111001"
  • S4 = "011100110110001"

Return the kth bit in Sn. It is guaranteed that k is valid for the given n.

Example 1:

Input: n = 3, k = 1
Output: "0"
Explanation: S3 is "0111001". The first bit is "0".

Example 2:

Input: n = 4, k = 11
Output: "1"
Explanation: S4 is "011100110110001". The 11th bit is "1".

Example 3:

Input: n = 1, k = 1
Output: "0"

Example 4:

Input: n = 2, k = 3
Output: "1"

Constraints:

  • 1 <= n <= 20
  • 1 <= k <= 2n - 1

Solution 1: Brute Force / Simulation

Generate the string till Sn or length >= k.

Time complexity: O(2^n)
Space complexity: O(2^n)

C++

Solution 2: Recursion

All the strings have odd length of L = (1 << n) – 1,
Let say the center m = (L + 1) / 2
if n == 1, k should be 1 and ans is “0”.
Otherwise
if k == m, we know it’s “1”.
if k < m, the answer is the same as find(n-1, K)
if k > m, we are finding a flipped and mirror char in S(n-1), thus the answer is flip(find(n-1, L – k + 1)).

Time complexity: O(n)
Space complexity: O(n)

C++

Java

Python3

花花酱 LeetCode 1544. Make The String Great

Given a string s of lower and upper case English letters.

A good string is a string which doesn’t have two adjacent characters s[i] and s[i + 1] where:

  • 0 <= i <= s.length - 2
  • s[i] is a lower-case letter and s[i + 1] is the same letter but in upper-case or vice-versa.

To make the string good, you can choose two adjacent characters that make the string bad and remove them. You can keep doing this until the string becomes good.

Return the string after making it good. The answer is guaranteed to be unique under the given constraints.

Notice that an empty string is also good.

Example 1:

Input: s = "leEeetcode"
Output: "leetcode"
Explanation: In the first step, either you choose i = 1 or i = 2, both will result "leEeetcode" to be reduced to "leetcode".

Example 2:

Input: s = "abBAcC"
Output: ""
Explanation: We have many possible scenarios, and all lead to the same answer. For example:
"abBAcC" --> "aAcC" --> "cC" --> ""
"abBAcC" --> "abBA" --> "aA" --> ""

Example 3:

Input: s = "s"
Output: "s"

Constraints:

  • 1 <= s.length <= 100
  • s contains only lower and upper case English letters.

Solution: Stack

Iterator over the string, compare current char with top of the stack, if they are a bad pair, pop the stack (remove both of them). Otherwise, push the current char onto the stack.

input: “abBAcC”
“a”
“ab”
“abB” -> “a”
aA” -> “”
“c”
cC” -> “”
ans = “”

Time complexity: O(n)
Space complexity: O(n)

C++

Java

Python3

花花酱 LeetCode 1542. Find Longest Awesome Substring

Given a string s. An awesome substring is a non-empty substring of s such that we can make any number of swaps in order to make it palindrome.

Return the length of the maximum length awesome substring of s.

Example 1:

Input: s = "3242415"
Output: 5
Explanation: "24241" is the longest awesome substring, we can form the palindrome "24142" with some swaps.

Example 2:

Input: s = "12345678"
Output: 1

Example 3:

Input: s = "213123"
Output: 6
Explanation: "213123" is the longest awesome substring, we can form the palindrome "231132" with some swaps.

Example 4:

Input: s = "00"
Output: 2

Constraints:

  • 1 <= s.length <= 10^5
  • s consists only of digits.

Solution: Prefix mask + Hashtable

For a palindrome all digits must occurred even times expect one. We can use a 10 bit mask to track the occurrence of each digit for prefix s[0~i]. 0 is even, 1 is odd.

We use a hashtable to track the first index of each prefix state.
If s[0~i] and s[0~j] have the same state which means every digits in s[i+1~j] occurred even times (zero is also even) and it’s an awesome string. Then (j – (i+1) + 1) = j – i is the length of the palindrome. So far so good.

But we still need to consider the case when there is a digit with odd occurrence. We can enumerate all possible ones from 0 to 9, and temporarily flip the bit of the digit and see whether that state happened before.

fisrt_index[0] = -1, first_index[*] = inf
ans = max(ans, j – first_index[mask])

Time complexity: O(n)
Space complexity: O(2^10) = O(1)

C++

Java

Python3