Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1860. Incremental Memory Leak

You are given two integers memory1 and memory2 representing the available memory in bits on two memory sticks. There is currently a faulty program running that consumes an increasing amount of memory every second.

At the ith second (starting from 1), i bits of memory are allocated to the stick with more available memory (or from the first memory stick if both have the same available memory). If neither stick has at least i bits of available memory, the program crashes.

Return an array containing [crashTime, memory1crash, memory2crash], where crashTime is the time (in seconds) when the program crashed and memory1crash and memory2crash are the available bits of memory in the first and second sticks respectively.

Example 1:

Input: memory1 = 2, memory2 = 2
Output: [3,1,0]
Explanation: The memory is allocated as follows:
- At the 1st second, 1 bit of memory is allocated to stick 1. The first stick now has 1 bit of available memory.
- At the 2nd second, 2 bits of memory are allocated to stick 2. The second stick now has 0 bits of available memory.
- At the 3rd second, the program crashes. The sticks have 1 and 0 bits available respectively.

Example 2:

Input: memory1 = 8, memory2 = 11
Output: [6,0,4]
Explanation: The memory is allocated as follows:
- At the 1st second, 1 bit of memory is allocated to stick 2. The second stick now has 10 bit of available memory.
- At the 2nd second, 2 bits of memory are allocated to stick 2. The second stick now has 8 bits of available memory.
- At the 3rd second, 3 bits of memory are allocated to stick 1. The first stick now has 5 bits of available memory.
- At the 4th second, 4 bits of memory are allocated to stick 2. The second stick now has 4 bits of available memory.
- At the 5th second, 5 bits of memory are allocated to stick 1. The first stick now has 0 bits of available memory.
- At the 6th second, the program crashes. The sticks have 0 and 4 bits available respectively.

Constraints:

  • 0 <= memory1, memory2 <= 231 - 1

Solution: Simulation

Time complexity: O(max(memory1, memory2)0.5)
Space complexity: O(1)

Python3

花花酱 LeetCode 1859. Sorting the Sentence

sentence is a list of words that are separated by a single space with no leading or trailing spaces. Each word consists of lowercase and uppercase English letters.

A sentence can be shuffled by appending the 1-indexed word position to each word then rearranging the words in the sentence.

  • For example, the sentence "This is a sentence" can be shuffled as "sentence4 a3 is2 This1" or "is2 sentence4 This1 a3".

Given a shuffled sentence s containing no more than 9 words, reconstruct and return the original sentence.

Example 1:

Input: s = "is2 sentence4 This1 a3"
Output: "This is a sentence"
Explanation: Sort the words in s to their original positions "This1 is2 a3 sentence4", then remove the numbers.

Example 2:

Input: s = "Myself2 Me1 I4 and3"
Output: "Me Myself and I"
Explanation: Sort the words in s to their original positions "Me1 Myself2 and3 I4", then remove the numbers.

Constraints:

  • 2 <= s.length <= 200
  • s consists of lowercase and uppercase English letters, spaces, and digits from 1 to 9.
  • The number of words in s is between 1 and 9.
  • The words in s are separated by a single space.
  • s contains no leading or trailing spaces.

Solution: String

Time complexity: O(n)
Space complexity: O(n)

Python3

花花酱 LeetCode 1857. Largest Color Value in a Directed Graph

There is a directed graph of n colored nodes and m edges. The nodes are numbered from 0 to n - 1.

You are given a string colors where colors[i] is a lowercase English letter representing the color of the ith node in this graph (0-indexed). You are also given a 2D array edges where edges[j] = [aj, bj] indicates that there is a directed edge from node aj to node bj.

A valid path in the graph is a sequence of nodes x1 -> x2 -> x3 -> ... -> xk such that there is a directed edge from xi to xi+1 for every 1 <= i < k. The color value of the path is the number of nodes that are colored the most frequently occurring color along that path.

Return the largest color value of any valid path in the given graph, or -1 if the graph contains a cycle.

Example 1:

Input: colors = "abaca", edges = [[0,1],[0,2],[2,3],[3,4]]
Output: 3
Explanation: The path 0 -> 2 -> 3 -> 4 contains 3 nodes that are colored "a" (red in the above image).

Example 2:

Input: colors = "a", edges = [[0,0]]
Output: -1
Explanation: There is a cycle from 0 to 0.

Constraints:

  • n == colors.length
  • m == edges.length
  • 1 <= n <= 105
  • 0 <= m <= 105
  • colors consists of lowercase English letters.
  • 0 <= aj, bj < n

Solution: Topological Sorting

freq[n][c] := max freq of color c after visiting node n.

Time complexity: O(n)
Space complexity: O(n*26)

python

花花酱 LeetCode 1855. Maximum Distance Between a Pair of Values

You are given two non-increasing 0-indexed integer arrays nums1​​​​​​ and nums2​​​​​​.

A pair of indices (i, j), where 0 <= i < nums1.length and 0 <= j < nums2.length, is valid if both i <= j and nums1[i] <= nums2[j]. The distance of the pair is j - i​​​​.

Return the maximum distance of any valid pair (i, j). If there are no valid pairs, return 0.

An array arr is non-increasing if arr[i-1] >= arr[i] for every 1 <= i < arr.length.

Example 1:

Input: nums1 = [55,30,5,4,2], nums2 = [100,20,10,10,5]
Output: 2
Explanation: The valid pairs are (0,0), (2,2), (2,3), (2,4), (3,3), (3,4), and (4,4).
The maximum distance is 2 with pair (2,4).

Example 2:

Input: nums1 = [2,2,2], nums2 = [10,10,1]
Output: 1
Explanation: The valid pairs are (0,0), (0,1), and (1,1).
The maximum distance is 1 with pair (0,1).

Example 3:

Input: nums1 = [30,29,19,5], nums2 = [25,25,25,25,25]
Output: 2
Explanation: The valid pairs are (2,2), (2,3), (2,4), (3,3), and (3,4).
The maximum distance is 2 with pair (2,4).

Example 4:

Input: nums1 = [5,4], nums2 = [3,2]
Output: 0
Explanation: There are no valid pairs, so return 0.

Constraints:

  • 1 <= nums1.length <= 105
  • 1 <= nums2.length <= 105
  • 1 <= nums1[i], nums2[j] <= 105
  • Both nums1 and nums2 are non-increasing.

Solution: Two Pointers

For each i, find the largest j such that nums[j] >= nums[i].

Time complexity: O(n + m)
Space complexity: O(1)

C++

花花酱 LeetCode 1854. Maximum Population Year

You are given a 2D integer array logs where each logs[i] = [birthi, deathi] indicates the birth and death years of the ith person.

The population of some year x is the number of people alive during that year. The ith person is counted in year x‘s population if x is in the inclusive range [birthi, deathi - 1]. Note that the person is not counted in the year that they die.

Return the earliest year with the maximum population.

Example 1:

Input: logs = [[1993,1999],[2000,2010]]
Output: 1993
Explanation: The maximum population is 1, and 1993 is the earliest year with this population.

Example 2:

Input: logs = [[1950,1961],[1960,1971],[1970,1981]]
Output: 1960
Explanation: 
The maximum population is 2, and it had happened in years 1960 and 1970.
The earlier year between them is 1960.

Constraints:

  • 1 <= logs.length <= 100
  • 1950 <= birthi < deathi <= 2050

Solution: Simulation

Time complexity: O(n*y)
Space complexity: O(y)

C++