Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 2477. Minimum Fuel Cost to Report to the Capital

There is a tree (i.e., a connected, undirected graph with no cycles) structure country network consisting of n cities numbered from 0 to n - 1 and exactly n - 1 roads. The capital city is city 0. You are given a 2D integer array roads where roads[i] = [ai, bi] denotes that there exists a bidirectional road connecting cities ai and bi.

There is a meeting for the representatives of each city. The meeting is in the capital city.

There is a car in each city. You are given an integer seats that indicates the number of seats in each car.

A representative can use the car in their city to travel or change the car and ride with another representative. The cost of traveling between two cities is one liter of fuel.

Return the minimum number of liters of fuel to reach the capital city.

Example 1:

Input: roads = [[0,1],[0,2],[0,3]], seats = 5
Output: 3
Explanation: 
- Representative1 goes directly to the capital with 1 liter of fuel.
- Representative2 goes directly to the capital with 1 liter of fuel.
- Representative3 goes directly to the capital with 1 liter of fuel.
It costs 3 liters of fuel at minimum. 
It can be proven that 3 is the minimum number of liters of fuel needed.

Example 2:

Input: roads = [[3,1],[3,2],[1,0],[0,4],[0,5],[4,6]], seats = 2
Output: 7
Explanation: 
- Representative2 goes directly to city 3 with 1 liter of fuel.
- Representative2 and representative3 go together to city 1 with 1 liter of fuel.
- Representative2 and representative3 go together to the capital with 1 liter of fuel.
- Representative1 goes directly to the capital with 1 liter of fuel.
- Representative5 goes directly to the capital with 1 liter of fuel.
- Representative6 goes directly to city 4 with 1 liter of fuel.
- Representative4 and representative6 go together to the capital with 1 liter of fuel.
It costs 7 liters of fuel at minimum. 
It can be proven that 7 is the minimum number of liters of fuel needed.

Example 3:

Input: roads = [], seats = 1
Output: 0
Explanation: No representatives need to travel to the capital city.

Constraints:

  • 1 <= n <= 105
  • roads.length == n - 1
  • roads[i].length == 2
  • 0 <= ai, bi < n
  • ai != bi
  • roads represents a valid tree.
  • 1 <= seats <= 105

Solution: Greedy + DFS

To reach the minimum cost, we must share cars if possible, say X reps from children nodes to an intermediate node u on the way towards capital 0. Then they all changes cars at node u, and we need (X + 1) // seats cars/fuel from u to 0.

We use DFS to count # of reps at each node u while accumulating the total cost.

Time complexity: O(n)
Space complexity: O(n)

C++

花花酱 LeetCode 2469. Convert the Temperature

You are given a non-negative floating point number rounded to two decimal places celsius, that denotes the temperature in Celsius.

You should convert Celsius into Kelvin and Fahrenheit and return it as an array ans = [kelvin, fahrenheit].

Return the array ansAnswers within 10-5 of the actual answer will be accepted.

Note that:

  • Kelvin = Celsius + 273.15
  • Fahrenheit = Celsius * 1.80 + 32.00

Example 1:

Input: celsius = 36.50
Output: [309.65000,97.70000]
Explanation: Temperature at 36.50 Celsius converted in Kelvin is 309.65 and converted in Fahrenheit is 97.70.

Example 2:

Input: celsius = 122.11
Output: [395.26000,251.79800]
Explanation: Temperature at 122.11 Celsius converted in Kelvin is 395.26 and converted in Fahrenheit is 251.798.

Constraints:

  • 0 <= celsius <= 1000

Solution: Follow the formulas

Time complexity: O(1)
Space complexity: O(1)

C++

花花酱 LeetCode 2476. Closest Nodes Queries in a Binary Search Tree

You are given the root of a binary search tree and an array queries of size n consisting of positive integers.

Find a 2D array answer of size n where answer[i] = [mini, maxi]:

  • mini is the largest value in the tree that is smaller than or equal to queries[i]. If a such value does not exist, add -1 instead.
  • maxi is the smallest value in the tree that is greater than or equal to queries[i]. If a such value does not exist, add -1 instead.

Return the array answer.

Example 1:

Input: root = [6,2,13,1,4,9,15,null,null,null,null,null,null,14], queries = [2,5,16]
Output: [[2,2],[4,6],[15,-1]]
Explanation: We answer the queries in the following way:
- The largest number that is smaller or equal than 2 in the tree is 2, and the smallest number that is greater or equal than 2 is still 2. So the answer for the first query is [2,2].
- The largest number that is smaller or equal than 5 in the tree is 4, and the smallest number that is greater or equal than 5 is 6. So the answer for the second query is [4,6].
- The largest number that is smaller or equal than 16 in the tree is 15, and the smallest number that is greater or equal than 16 does not exist. So the answer for the third query is [15,-1].

Example 2:

Input: root = [4,null,9], queries = [3]
Output: [[-1,4]]
Explanation: The largest number that is smaller or equal to 3 in the tree does not exist, and the smallest number that is greater or equal to 3 is 4. So the answer for the query is [-1,4].

Constraints:

  • The number of nodes in the tree is in the range [2, 105].
  • 1 <= Node.val <= 106
  • n == queries.length
  • 1 <= n <= 105
  • 1 <= queries[i] <= 106

Solution: Convert to sorted array

Since we don’t know whether the tree is balanced or not, the safest and easiest way is to convert the tree into a sorted array using inorder traversal. Or just any traversal and sort the array later on.

Once we have a sorted array, we can use lower_bound / upper_bound to query.

Time complexity: O(qlogn)
Space complexity: O(n)

C++

One binary search per query.

C++

花花酱 LeetCode 2475. Number of Unequal Triplets in Array

You are given a 0-indexed array of positive integers nums. Find the number of triplets (i, j, k) that meet the following conditions:

  • 0 <= i < j < k < nums.length
  • nums[i]nums[j], and nums[k] are pairwise distinct.
    • In other words, nums[i] != nums[j]nums[i] != nums[k], and nums[j] != nums[k].

Return the number of triplets that meet the conditions.

Example 1:

Input: nums = [4,4,2,4,3]
Output: 3
Explanation: The following triplets meet the conditions:
- (0, 2, 4) because 4 != 2 != 3
- (1, 2, 4) because 4 != 2 != 3
- (2, 3, 4) because 2 != 4 != 3
Since there are 3 triplets, we return 3.
Note that (2, 0, 4) is not a valid triplet because 2 > 0.

Example 2:

Input: nums = [1,1,1,1,1]
Output: 0
Explanation: No triplets meet the conditions so we return 0.

Constraints:

  • 3 <= nums.length <= 100
  • 1 <= nums[i] <= 1000

Solution 1: Brute Force

Enumerate i, j, k.

Time complexity: O(n3)
Space complexity: O(1)

C++

花花酱 LeetCode 2452. Words Within Two Edits of Dictionary

You are given two string arrays, queries and dictionary. All words in each array comprise of lowercase English letters and have the same length.

In one edit you can take a word from queries, and change any letter in it to any other letter. Find all words from queries that, after a maximum of two edits, equal some word from dictionary.

Return a list of all words from queriesthat match with some word from dictionary after a maximum of two edits. Return the words in the same order they appear in queries.

Example 1:

Input: queries = ["word","note","ants","wood"], dictionary = ["wood","joke","moat"]
Output: ["word","note","wood"]
Explanation:
- Changing the 'r' in "word" to 'o' allows it to equal the dictionary word "wood".
- Changing the 'n' to 'j' and the 't' to 'k' in "note" changes it to "joke".
- It would take more than 2 edits for "ants" to equal a dictionary word.
- "wood" can remain unchanged (0 edits) and match the corresponding dictionary word.
Thus, we return ["word","note","wood"].

Example 2:

Input: queries = ["yes"], dictionary = ["not"]
Output: []
Explanation:
Applying any two edits to "yes" cannot make it equal to "not". Thus, we return an empty array.

Constraints:

  • 1 <= queries.length, dictionary.length <= 100
  • n == queries[i].length == dictionary[j].length
  • 1 <= n <= 100
  • All queries[i] and dictionary[j] are composed of lowercase English letters.

Solution: Hamming distance + Brute Force

For each query word q, check the hamming distance between it and all words in the dictionary.

Time complexity: O(|q|*|d|*n)
Space complexity: O(1)

C++