Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 1154. Day of the Year

Given a string date representing a Gregorian calendar date formatted as YYYY-MM-DD, return the day number of the year.

Example 1:

Input: date = "2019-01-09"
Output: 9
Explanation: Given date is the 9th day of the year in 2019.

Example 2:

Input: date = "2019-02-10"
Output: 41

Example 3:

Input: date = "2003-03-01"
Output: 60

Example 4:

Input: date = "2004-03-01"
Output: 61

Constraints:

  • date.length == 10
  • date[4] == date[7] == '-', and all other date[i]‘s are digits
  • date represents a calendar date between Jan 1st, 1900 and Dec 31, 2019.

Solution:

Key: checking whether that year is a leap year or not.
is_leap = (year % 4 == 0 and year % 100 !=0) or year % 400 == 0

Time complexity: O(1)
Space complexity: O(1)

Python

花花酱 LeetCode 1157. Online Majority Element In Subarray

Implementing the class MajorityChecker, which has the following API:

  • MajorityChecker(int[] arr) constructs an instance of MajorityChecker with the given array arr;
  • int query(int left, int right, int threshold) has arguments such that:
    • 0 <= left <= right < arr.length representing a subarray of arr;
    • 2 * threshold > right - left + 1, ie. the threshold is always a strict majority of the length of the subarray

Each query(...) returns the element in arr[left], arr[left+1], ..., arr[right]that occurs at least threshold times, or -1 if no such element exists.

Example:

MajorityChecker majorityChecker = new MajorityChecker([1,1,2,2,1,1]);
majorityChecker.query(0,5,4); // returns 1
majorityChecker.query(0,3,3); // returns -1
majorityChecker.query(2,3,2); // returns 2

Constraints:

  • 1 <= arr.length <= 20000
  • 1 <= arr[i] <= 20000
  • For each query, 0 <= left <= right < len(arr)
  • For each query, 2 * threshold > right - left + 1
  • The number of queries is at most 10000

Solution 0: Brute Force TLE

For each range, find the majority element in O(n) time / O(n) or O(1) space.

Solution 1: Cache the range result

Cache the result for each range: mode and frequency

Time complexity:
init: O(1)
query: O(|right – left|)
total queries: O(sum(right_i – left_i)), right_i, left_i are bounds of unique ranges.
Space complexity:
init: O(1)
query: O(20000)

C++

Solution 2: HashTable + binary search

Preprocessing: use a hashtable to store the indices of each element. And sort by frequency of the element in descending order.
Query: iterator over (total_freq, num) pair, if freq >= threshold do a binary search to find the frequency of the given range for num in O(logn).

Time complexity:
Init: O(nlogn)
Query: worst case: O(nlogn), best case: O(logn)

C++

Solution 2+: Randomization

Randomly pick a num in range [left, right] and check its freq, try k (e.g. 30) times. If a majority element exists, you should find it with error rate 1/2^k.

Time complexity:
Init: O(n)
Query: O(30 * logn)
Space complexity: O(n)

C++

花花酱 LeetCode 1110. Delete Nodes And Return Forest

Given the root of a binary tree, each node in the tree has a distinct value.

After deleting all nodes with a value in to_delete, we are left with a forest (a disjoint union of trees).

Return the roots of the trees in the remaining forest.  You may return the result in any order.

Example 1:

Input: root = [1,2,3,4,5,6,7], to_delete = [3,5]
Output: [[1,2,null,4],[6],[7]]

Constraints:

  • The number of nodes in the given tree is at most 1000.
  • Each node has a distinct value between 1 and 1000.
  • to_delete.length <= 1000
  • to_delete contains distinct values between 1 and 1000.

Solution: Recursion / Post-order traversal

Recursively delete nodes on left subtree and right subtree and return the trimmed tree.
if the current node needs to be deleted, then its non-null children will be added to output array.

Time complexity: O(n)
Space complexity: O(|d| + h)

C++

Python3

花花酱 LeetCode 1147. Longest Chunked Palindrome Decomposition

Return the largest possible k such that there exists a_1, a_2, ..., a_k such that:

  • Each a_i is a non-empty string;
  • Their concatenation a_1 + a_2 + ... + a_k is equal to text;
  • For all 1 <= i <= k,  a_i = a_{k+1 - i}.

Example 1:

Input: text = "ghiabcdefhelloadamhelloabcdefghi"
Output: 7
Explanation: We can split the string on "(ghi)(abcdef)(hello)(adam)(hello)(abcdef)(ghi)".

Example 2:

Input: text = "merchant"
Output: 1
Explanation: We can split the string on "(merchant)".

Example 3:

Input: text = "antaprezatepzapreanta"
Output: 11
Explanation: We can split the string on "(a)(nt)(a)(pre)(za)(tpe)(za)(pre)(a)(nt)(a)".

Example 4:

Input: text = "aaa"
Output: 3
Explanation: We can split the string on "(a)(a)(a)".

Solution: Greedy

Break the string when the shortest palindrome is found.
prefer to use string_view

Time complexity: O(n^2)
Space complexity: O(n)

C++

花花酱 LeetCode 1146. Snapshot Array

Implement a SnapshotArray that supports the following interface:

  • SnapshotArray(int length) initializes an array-like data structure with the given length.  Initially, each element equals 0.
  • void set(index, val) sets the element at the given index to be equal to val.
  • int snap() takes a snapshot of the array and returns the snap_id: the total number of times we called snap() minus 1.
  • int get(index, snap_id) returns the value at the given index, at the time we took the snapshot with the given snap_id

Example 1:

Input: ["SnapshotArray","set","snap","set","get"]
[[3],[0,5],[],[0,6],[0,0]]
Output: [null,null,0,null,5]
Explanation: 
SnapshotArray snapshotArr = new SnapshotArray(3); // set the length to be 3
snapshotArr.set(0,5);  // Set array[0] = 5
snapshotArr.snap();  // Take a snapshot, return snap_id = 0
snapshotArr.set(0,6);
snapshotArr.get(0,0);  // Get the value of array[0] with snap_id = 0, return 5

Constraints:

  • 1 <= length <= 50000
  • At most 50000 calls will be made to setsnap, and get.
  • 0 <= index < length
  • 0 <= snap_id < (the total number of times we call snap())
  • 0 <= val <= 10^9

Solution: map + upper_bound

Use a vector to store maps, one map per element.
The map stores {snap_id -> val}, use upper_bound to find the first version > snap_id and use previous version’s value.

Time complexity:
Set: O(log|snap_id|)
Get: O(log|snap_id|)
Snap: O(1)
Space complexity: O(length + set_calls)

C++