Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 933. Number of Recent Calls

Problem

Write a class RecentCounter to count recent requests.

It has only one method: ping(int t), where t represents some time in milliseconds.

Return the number of pings that have been made from 3000 milliseconds ago until now.

Any ping with time in [t - 3000, t] will count, including the current ping.

It is guaranteed that every call to ping uses a strictly larger value of t than before.

Example 1:

Input: inputs = ["RecentCounter","ping","ping","ping","ping"], inputs = [[],[1],[100],[3001],[3002]]
Output: [null,1,2,3,3]

Note:

  1. Each test case will have at most 10000 calls to ping.
  2. Each test case will call ping with strictly increasing values of t.
  3. Each call to ping will have 1 <= t <= 10^9.

Solution: Queue

Use a FIFO queue to track all the previous pings that are within 3000 ms to current.

Time complexity: Avg O(1), Total O(n)

Space complexity: O(n)

C++

花花酱 LeetCode 934. Shortest Bridge

Problem

https://leetcode.com/problems/shortest-bridge/description/

In a given 2D binary array A, there are two islands.  (An island is a 4-directionally connected group of 1s not connected to any other 1s.)

Now, we may change 0s to 1s so as to connect the two islands together to form 1 island.

Return the smallest number of 0s that must be flipped.  (It is guaranteed that the answer is at least 1.)

Example 1:

Input: [[0,1],[1,0]]
Output: 1

Example 2:

Input: [[0,1,0],[0,0,0],[0,0,1]]
Output: 2

Example 3:

Input: [[1,1,1,1,1],[1,0,0,0,1],[1,0,1,0,1],[1,0,0,0,1],[1,1,1,1,1]]
Output: 1

Note:

  1. 1 <= A.length = A[0].length <= 100
  2. A[i][j] == 0 or A[i][j] == 1

Solution: DFS + BFS

  1. Use DFS to find one island and color all the nodes as 2 (BLUE).
  2. Use BFS to find the shortest path from any nodes with color 2 (BLUE) to any nodes with color 1 (RED).

Time complexity: O(mn)

Space complexity: O(mn)

C++

Related Problems

花花酱 LeetCode DP Summary 动态规划总结

Summary: Input size / sub-problem size / sub-problem complexity / time complexity / space complexity

Category 1.1

Template

 

Summary and slides

花花酱 LeetCode 931. Minimum Falling Path Sum

Problem

Given a square array of integers A, we want the minimum sum of a falling path through A.

A falling path starts at any element in the first row, and chooses one element from each row.  The next row’s choice must be in a column that is different from the previous row’s column by at most one.

 

Example 1:

Input: [[1,2,3],[4,5,6],[7,8,9]]
Output: 12
Explanation: 
The possible falling paths are:
  • [1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
  • [2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
  • [3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]

The falling path with the smallest sum is [1,4,7], so the answer is 12.

Note:

  1. 1 <= A.length == A[0].length <= 100
  2. -100 <= A[i][j] <= 100

Solution: DP

Time complexity: O(mn)

Space complexity: O(mn)

C++

C++/in place

花花酱 LeetCode 929. Unique Email Addresses

Every email consists of a local name and a domain name, separated by the @ sign.

For example, in alice@leetcode.comalice is the local name, and leetcode.com is the domain name.

Besides lowercase letters, these emails may contain '.'s or '+'s.

If you add periods ('.') between some characters in the local name part of an email address, mail sent there will be forwarded to the same address without dots in the local name.  For example, "alice.z@leetcode.com" and "alicez@leetcode.com" forward to the same email address.  (Note that this rule does not apply for domain names.)

If you add a plus ('+') in the local name, everything after the first plus sign will be ignored. This allows certain emails to be filtered, for example m.y+name@email.com will be forwarded to my@email.com.  (Again, this rule does not apply for domain names.)

It is possible to use both of these rules at the same time.

Given a list of emails, we send one email to each address in the list.  How many different addresses actually receive mails?

Example 1:

Input: ["test.email+alex@leetcode.com","test.e.mail+bob.cathy@leetcode.com","testemail+david@lee.tcode.com"]
Output: 2
Explanation: "testemail@leetcode.com" and "testemail@lee.tcode.com" actually receive mails

 

Note:

  • 1 <= emails[i].length <= 100
  • 1 <= emails.length <= 100
  • Each emails[i] contains exactly one '@' character.

 

Solution: 

Time complexity: O(n*l)
Space complexity: O(n*l)

C++