You need to construct a string consists of parenthesis and integers from a binary tree with the preorder traversing way.
The null node needs to be represented by empty parenthesis pair “()”. And you need to omit all the empty parenthesis pairs that don’t affect the one-to-one mapping relationship between the string and the original binary tree.
Example 1:
Input: Binary tree: [1,2,3,4]
1
/ \
2 3
/
4
Output: "1(2(4))(3)"
Explanation: Originallay it needs to be "1(2(4)())(3()())",
but you need to omit all the unnecessary empty parenthesis pairs.
And it will be "1(2(4))(3)".
Example 2:
Input: Binary tree: [1,2,3,null,4]
1
/ \
2 3
\
4
Output: "1(2()(4))(3)"
Explanation: Almost the same as the first example,
except we can't omit the first parenthesis pair to break the one-to-one mapping relationship between the input and the output.
Given an array of integers A, consider all non-empty subsequences of A.
For any sequence S, let the width of S be the difference between the maximum and minimum element of S.
Return the sum of the widths of all subsequences of A.
As the answer may be very large, return the answer modulo 10^9 + 7.
Example 1:
Input: [2,1,3]Output: 6Explanation:
Subsequences are [1], [2], [3], [2,1], [2,3], [1,3], [2,1,3].
The corresponding widths are 0, 0, 0, 1, 1, 2, 2.
The sum of these widths is 6.
Note:
1 <= A.length <= 20000
1 <= A[i] <= 20000
Solution: Math
Sort the array, for A[i]:
i numbers <= A[i]. A[i] is the upper bound of 2^i subsequences.
n – i – 1 numbers >= A[i]. A[i] is the lower bound of 2^(n – i – 1) subsequences.
A[i] contributes A[i] * 2^i – A[i] * 2^(n – i – 1) to the ans.