Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 879. Profitable Schemes

Problem

There are G people in a gang, and a list of various crimes they could commit.

The i-th crime generates a profit[i] and requires group[i] gang members to participate.

If a gang member participates in one crime, that member can’t participate in another crime.

Let’s call a profitable scheme any subset of these crimes that generates at least P profit, and the total number of gang members participating in that subset of crimes is at most G.

How many schemes can be chosen?  Since the answer may be very large, return it modulo 10^9 + 7.

Example 1:

Input: G = 5, P = 3, group = [2,2], profit = [2,3]
Output: 2
Explanation: 
To make a profit of at least 3, the gang could either commit crimes 0 and 1, or just crime 1.
In total, there are 2 schemes.

Example 2:

Input: G = 10, P = 5, group = [2,3,5], profit = [6,7,8]
Output: 7
Explanation: 
To make a profit of at least 5, the gang could commit any crimes, as long as they commit one.
There are 7 possible schemes: (0), (1), (2), (0,1), (0,2), (1,2), and (0,1,2).

Note:

  1. 1 <= G <= 100
  2. 0 <= P <= 100
  3. 1 <= group[i] <= 100
  4. 0 <= profit[i] <= 100
  5. 1 <= group.length = profit.length <= 100

Solution: DP

Time complexity: O(KPG)

Space complexity: O(KPG)

C++

Space complexity: O(PG)

v1: Dimension reduction by copying.

v2: Dimension reduction by using rolling array.

 

花花酱 LeetCode 878. Nth Magical Number

Problem

A positive integer is magical if it is divisible by either A or B.

Return the N-th magical number.  Since the answer may be very large, return it modulo 10^9 + 7.

Example 1:

Input: N = 1, A = 2, B = 3
Output: 2

Example 2:

Input: N = 4, A = 2, B = 3
Output: 6

Example 3:

Input: N = 5, A = 2, B = 4
Output: 10

Example 4:

Input: N = 3, A = 6, B = 4
Output: 8

Note:

  1. 1 <= N <= 10^9
  2. 2 <= A <= 40000
  3. 2 <= B <= 40000

Solution: Math + Binary Search

Let n denote the number of numbers <= X that are divisible by either A or B.

n = X / A + X / B – X / lcm(A, B) = X / A + X / B – X / (A * B / gcd(A, B))

Binary search for the smallest X such that n >= N

Time complexity: O(log(1e9*4e5)

Space complexity: O(1)

 

花花酱 LeetCode 877. Stone Game

Problem

Alex and Lee play a game with piles of stones.  There are an even number of piles arranged in a row, and each pile has a positive integer number of stones piles[i].

The objective of the game is to end with the most stones.  The total number of stones is odd, so there are no ties.

Alex and Lee take turns, with Alex starting first.  Each turn, a player takes the entire pile of stones from either the beginning or the end of the row.  This continues until there are no more piles left, at which point the person with the most stones wins.

Assuming Alex and Lee play optimally, return True if and only if Alex wins the game.

Example 1:

Input: [5,3,4,5]
Output: true
Explanation: 
Alex starts first, and can only take the first 5 or the last 5.
Say he takes the first 5, so that the row becomes [3, 4, 5].
If Lee takes 3, then the board is [4, 5], and Alex takes 5 to win with 10 points.
If Lee takes the last 5, then the board is [3, 4], and Alex takes 4 to win with 9 points.
This demonstrated that taking the first 5 was a winning move for Alex, so we return true.

Note:

  1. 2 <= piles.length <= 500
  2. piles.length is even.
  3. 1 <= piles[i] <= 500
  4. sum(piles) is odd.

Solution 1: min-max (TLE)

Time complexity: O(2^n)

Space complexity: O(n)

Solution 2: min-max + memorization

Time complexity: O(n^2)

Space complexity: O(n^2)

Solution 3:  min-max + DP

Time complexity: O(n^2)

Space complexity: O(n^2)

O(n) Space

Related Problems

花花酱 LeetCode 876. Middle of the Linked List

Problem

Given a non-empty, singly linked list with head node head, return a middle node of linked list.

If there are two middle nodes, return the second middle node.

Example 1:

Input: [1,2,3,4,5]
Output: Node 3 from this list (Serialization: [3,4,5])
The returned node has value 3.  (The judge's serialization of this node is [3,4,5]).
Note that we returned a ListNode object ans, such that:
ans.val = 3, ans.next.val = 4, ans.next.next.val = 5, and ans.next.next.next = NULL.

Example 2:

Input: [1,2,3,4,5,6]
Output: Node 4 from this list (Serialization: [4,5,6])
Since the list has two middle nodes with values 3 and 4, we return the second one.

 

Note:

  • The number of nodes in the given list will be between 1 and 100.

Solution: Slow + Fast Pointers

Time complexity: O(n)

Space complexity: O(1)

 

花花酱 LeetCode 882. Random Point in Non-overlapping Rectangles

Problem

Given a list of non-overlapping axis-aligned rectangles rects, write a function pick which randomly and uniformily picks an integer point in the space covered by the rectangles.

Note:

  1. An integer point is a point that has integer coordinates.
  2. A point on the perimeter of a rectangle is included in the space covered by the rectangles.
  3. ith rectangle = rects[i] = [x1,y1,x2,y2], where [x1, y1] are the integer coordinates of the bottom-left corner, and [x2, y2] are the integer coordinates of the top-right corner.
  4. length and width of each rectangle does not exceed 2000.
  5. 1 <= rects.length <= 100
  6. pick return a point as an array of integer coordinates [p_x, p_y]
  7. pick is called at most 10000 times.

Example 1:

Input: 
["Solution","pick","pick","pick"]
[[[[1,1,5,5]]],[],[],[]]
Output: 
[null,[4,1],[4,1],[3,3]]

Example 2:

Input: 
["Solution","pick","pick","pick","pick","pick"]
[[[[-2,-2,-1,-1],[1,0,3,0]]],[],[],[],[],[]]
Output: 
[null,[-1,-2],[2,0],[-2,-1],[3,0],[-2,-2]]

Explanation of Input Syntax:

The input is two lists: the subroutines called and their arguments. Solution‘s constructor has one argument, the array of rectangles rectspick has no arguments. Arguments are always wrapped with a list, even if there aren’t any.

Solution: Binary Search

Same as LeetCode 880. Random Pick with Weight

Use area of the rectangles as weights.

Time complexity: Init: O(n) Pick: O(logn)

Space complexity: O(n)

Related Problems