You have a lock in front of you with 4 circular wheels. Each wheel has 10 slots: '0', '1', '2', '3', '4', '5', '6', '7', '8', '9'. The wheels can rotate freely and wrap around: for example we can turn '9' to be '0', or '0' to be '9'. Each move consists of turning one wheel one slot.
The lock initially starts at '0000', a string representing the state of the 4 wheels.
You are given a list of deadends dead ends, meaning if the lock displays any of these codes, the wheels of the lock will stop turning and you will be unable to open it.
Given a target representing the value of the wheels that will unlock the lock, return the minimum total number of turns required to open the lock, or -1 if it is impossible.
Say you have an array for which the ith element is the price of a given stock on day i.
If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.
Example 1:
1
2
3
4
Input:[7,1,5,3,6,4]
Output:5
max.difference=6-1=5(not7-1=6,asselling price needs tobe larger than buying price)
Find the minimum length word from a given dictionary words, which has all the letters from the string licensePlate. Such a word is said to complete the given string licensePlate
Here, for letters we ignore case. For example, "P" on the licensePlate still matches "p" on the word.
It is guaranteed an answer exists. If there are multiple answers, return the one that occurs first in the array.
The license plate might have the same letter occurring multiple times. For example, given a licensePlate of "PP", the word "pair" does not complete the licensePlate, but the word "supper" does.