Problem:
A self-dividing number is a number that is divisible by every digit it contains.
For example, 128 is a self-dividing number because 128 % 1 == 0, 128 % 2 == 0, and 128 % 8 == 0.
Also, a self-dividing number is not allowed to contain the digit zero.
Given a lower and upper number bound, output a list of every possible self dividing number, including the bounds if possible.
Example 1:
| 1 2 3 | Input:  left = 1, right = 22 Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22] | 
Note:
- The boundaries of each input argument are 1 <= left <= right <= 10000.
Idea:
Brute Force
Time Complexity: O(n)
Space Complexity: O(1)
Solution:
C++
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | // Author: Huahua // Runtime: 3 ms class Solution { public:     vector<int> selfDividingNumbers(int left, int right) {         vector<int> ans;         for (int n = left; n <= right; ++n) {             int t = n;             bool valid = true;             while (t && valid) {                 const int r = t % 10;                 if (r == 0 || n % r)                     valid = false;                 t /= 10;             }             if (valid) ans.push_back(n);         }         return ans;     } }; | 
String
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | // Author: Huahua // Runtime: 6 ms class Solution { public:     vector<int> selfDividingNumbers(int left, int right) {         vector<int> ans;         for (int n = left; n <= right; ++n) {             const string t = std::to_string(n);             bool valid = true;             for (const char c : t) {                 if (c == '0' || n % (c - '0')) {                     valid = false;                     break;                 }             }             if (valid) ans.push_back(n);         }         return ans;     } }; | 
Related Problems:






