Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 2641. Cousins in Binary Tree II

Given the root of a binary tree, replace the value of each node in the tree with the sum of all its cousins’ values.

Two nodes of a binary tree are cousins if they have the same depth with different parents.

Return the root of the modified tree.

Note that the depth of a node is the number of edges in the path from the root node to it.

Example 1:

Input: root = [5,4,9,1,10,null,7]
Output: [0,0,0,7,7,null,11]
Explanation: The diagram above shows the initial binary tree and the binary tree after changing the value of each node.
- Node with value 5 does not have any cousins so its sum is 0.
- Node with value 4 does not have any cousins so its sum is 0.
- Node with value 9 does not have any cousins so its sum is 0.
- Node with value 1 has a cousin with value 7 so its sum is 7.
- Node with value 10 has a cousin with value 7 so its sum is 7.
- Node with value 7 has cousins with values 1 and 10 so its sum is 11.

Example 2:

Input: root = [3,1,2]
Output: [0,0,0]
Explanation: The diagram above shows the initial binary tree and the binary tree after changing the value of each node.
- Node with value 3 does not have any cousins so its sum is 0.
- Node with value 1 does not have any cousins so its sum is 0.
- Node with value 2 does not have any cousins so its sum is 0.

Constraints:

  • The number of nodes in the tree is in the range [1, 105].
  • 1 <= Node.val <= 104

Solution: Level Order Sum

Time complexity: O(n)
Space complexity: O(n)

DFS, two passes

C++

BFS, one+ pass

C++

花花酱 LeetCode 2640. Find the Score of All Prefixes of an Array

We define the conversion array conver of an array arr as follows:

  • conver[i] = arr[i] + max(arr[0..i]) where max(arr[0..i]) is the maximum value of arr[j] over 0 <= j <= i.

We also define the score of an array arr as the sum of the values of the conversion array of arr.

Given a 0-indexed integer array nums of length n, return an array ans of length n where ans[i] is the score of the prefix nums[0..i].

Example 1:

Input: nums = [2,3,7,5,10]
Output: [4,10,24,36,56]
Explanation: 
For the prefix [2], the conversion array is [4] hence the score is 4
For the prefix [2, 3], the conversion array is [4, 6] hence the score is 10
For the prefix [2, 3, 7], the conversion array is [4, 6, 14] hence the score is 24
For the prefix [2, 3, 7, 5], the conversion array is [4, 6, 14, 12] hence the score is 36
For the prefix [2, 3, 7, 5, 10], the conversion array is [4, 6, 14, 12, 20] hence the score is 56

Example 2:

Input: nums = [1,1,2,4,8,16]
Output: [2,4,8,16,32,64]
Explanation: 
For the prefix [1], the conversion array is [2] hence the score is 2
For the prefix [1, 1], the conversion array is [2, 2] hence the score is 4
For the prefix [1, 1, 2], the conversion array is [2, 2, 4] hence the score is 8
For the prefix [1, 1, 2, 4], the conversion array is [2, 2, 4, 8] hence the score is 16
For the prefix [1, 1, 2, 4, 8], the conversion array is [2, 2, 4, 8, 16] hence the score is 32
For the prefix [1, 1, 2, 4, 8, 16], the conversion array is [2, 2, 4, 8, 16, 32] hence the score is 64

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 109

Solution: Prefix Sum

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 2639. Find the Width of Columns of a Grid

You are given a 0-indexed m x n integer matrix grid. The width of a column is the maximum length of its integers.

  • For example, if grid = [[-10], [3], [12]], the width of the only column is 3 since -10 is of length 3.

Return an integer array ans of size n where ans[i] is the width of the ith column.

The length of an integer x with len digits is equal to len if x is non-negative, and len + 1 otherwise.

Example 1:

Input: grid = [[1],[22],[333]]
Output: [3]
Explanation: In the 0th column, 333 is of length 3.

Example 2:

Input: grid = [[-15,1,3],[15,7,12],[5,6,-2]]
Output: [3,1,2]
Explanation: 
In the 0th column, only -15 is of length 3.
In the 1st column, all integers are of length 1. 
In the 2nd column, both 12 and -2 are of length 2.

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 100
  • -109 <= grid[r][c] <= 109

Solution: Simulation

Note: width of ‘0’ is 1.

Time complexity: O(m*n*log(x))
Space complexity: O(1)

C++

花花酱 LeetCode 2644. Find the Maximum Divisibility Score

You are given two 0-indexed integer arrays nums and divisors.

The divisibility score of divisors[i] is the number of indices j such that nums[j] is divisible by divisors[i].

Return the integer divisors[i] with the maximum divisibility score. If there is more than one integer with the maximum score, return the minimum of them.

Example 1:

Input: nums = [4,7,9,3,9], divisors = [5,2,3]
Output: 3
Explanation: The divisibility score for every element in divisors is:
The divisibility score of divisors[0] is 0 since no number in nums is divisible by 5.
The divisibility score of divisors[1] is 1 since nums[0] is divisible by 2.
The divisibility score of divisors[2] is 3 since nums[2], nums[3], and nums[4] are divisible by 3.
Since divisors[2] has the maximum divisibility score, we return it.

Example 2:

Input: nums = [20,14,21,10], divisors = [5,7,5]
Output: 5
Explanation: The divisibility score for every element in divisors is:
The divisibility score of divisors[0] is 2 since nums[0] and nums[3] are divisible by 5.
The divisibility score of divisors[1] is 2 since nums[1] and nums[2] are divisible by 7.
The divisibility score of divisors[2] is 2 since nums[0] and nums[3] are divisible by 5.
Since divisors[0], divisors[1], and divisors[2] all have the maximum divisibility score, we return the minimum of them (i.e., divisors[2]).

Example 3:

Input: nums = [12], divisors = [10,16]
Output: 10
Explanation: The divisibility score for every element in divisors is:
The divisibility score of divisors[0] is 0 since no number in nums is divisible by 10.
The divisibility score of divisors[1] is 0 since no number in nums is divisible by 16.
Since divisors[0] and divisors[1] both have the maximum divisibility score, we return the minimum of them (i.e., divisors[0]).

Constraints:

  • 1 <= nums.length, divisors.length <= 1000
  • 1 <= nums[i], divisors[i] <= 109

Solution: Brute Force

Time complexity: O(m*n)
Space complexity: O(1)

C++

花花酱 LeetCode 2643. Row With Maximum Ones

Given a m x n binary matrix mat, find the 0-indexed position of the row that contains the maximum count of ones, and the number of ones in that row.

In case there are multiple rows that have the maximum count of ones, the row with the smallest row number should be selected.

Return an array containing the index of the row, and the number of ones in it.

Example 1:

Input: mat = [[0,1],[1,0]]
Output: [0,1]
Explanation: Both rows have the same number of 1's. So we return the index of the smaller row, 0, and the maximum count of ones (1). So, the answer is [0,1]. 

Example 2:

Input: mat = [[0,0,0],[0,1,1]]
Output: [1,2]
Explanation: The row indexed 1 has the maximum count of ones (2). So we return its index, 1, and the count. So, the answer is [1,2].

Example 3:

Input: mat = [[0,0],[1,1],[0,0]]
Output: [1,2]
Explanation: The row indexed 1 has the maximum count of ones (2). So the answer is [1,2].

Constraints:

  • m == mat.length 
  • n == mat[i].length 
  • 1 <= m, n <= 100 
  • mat[i][j] is either 0 or 1.

Solution: Counting

Time complexity: O(m*n)
Space complexity: O(1)

C++