Press "Enter" to skip to content

Huahua's Tech Road

花花酱 LeetCode 2037. Minimum Number of Moves to Seat Everyone

There are n seats and n students in a room. You are given an array seats of length n, where seats[i] is the position of the ith seat. You are also given the array students of length n, where students[j] is the position of the jth student.

You may perform the following move any number of times:

  • Increase or decrease the position of the ith student by 1 (i.e., moving the ith student from position x to x + 1 or x - 1)

Return the minimum number of moves required to move each student to a seat such that no two students are in the same seat.

Note that there may be multiple seats or students in the same position at the beginning.

Example 1:

Input: seats = [3,1,5], students = [2,7,4]
Output: 4
Explanation: The students are moved as follows:
- The first student is moved from from position 2 to position 1 using 1 move.
- The second student is moved from from position 7 to position 5 using 2 moves.
- The third student is moved from from position 4 to position 3 using 1 move.
In total, 1 + 2 + 1 = 4 moves were used.

Example 2:

Input: seats = [4,1,5,9], students = [1,3,2,6]
Output: 7
Explanation: The students are moved as follows:
- The first student is not moved.
- The second student is moved from from position 3 to position 4 using 1 move.
- The third student is moved from from position 2 to position 5 using 3 moves.
- The fourth student is moved from from position 6 to position 9 using 3 moves.
In total, 0 + 1 + 3 + 3 = 7 moves were used.

Example 3:

Input: seats = [2,2,6,6], students = [1,3,2,6]
Output: 4
Explanation: The students are moved as follows:
- The first student is moved from from position 1 to position 2 using 1 move.
- The second student is moved from from position 3 to position 6 using 3 moves.
- The third student is not moved.
- The fourth student is not moved.
In total, 1 + 3 + 0 + 0 = 4 moves were used.

Constraints:

  • n == seats.length == students.length
  • 1 <= n <= 100
  • 1 <= seats[i], students[j] <= 100

Solution: Greedy

Sort both arrays, move students[i] to seats[i].

Time complexity: O(nlogn)
Space complexity: O(1)

C++

花花酱 LeetCode 2045. Second Minimum Time to Reach Destination

A city is represented as a bi-directional connected graph with n vertices where each vertex is labeled from 1 to n (inclusive). The edges in the graph are represented as a 2D integer array edges, where each edges[i] = [ui, vi] denotes a bi-directional edge between vertex ui and vertex vi. Every vertex pair is connected by at most one edge, and no vertex has an edge to itself. The time taken to traverse any edge is time minutes.

Each vertex has a traffic signal which changes its color from green to red and vice versa every change minutes. All signals change at the same time. You can enter a vertex at any time, but can leave a vertex only when the signal is green. You cannot wait at a vertex if the signal is green.

The second minimum value is defined as the smallest value strictly larger than the minimum value.

  • For example the second minimum value of [2, 3, 4] is 3, and the second minimum value of [2, 2, 4] is 4.

Given nedgestime, and change, return the second minimum time it will take to go from vertex 1 to vertex n.

Notes:

  • You can go through any vertex any number of times, including 1 and n.
  • You can assume that when the journey starts, all signals have just turned green.

Example 1:

Input: n = 5, edges = [[1,2],[1,3],[1,4],[3,4],[4,5]], time = 3, change = 5
Output: 13
Explanation:
The figure on the left shows the given graph.
The blue path in the figure on the right is the minimum time path.
The time taken is:
- Start at 1, time elapsed=0
- 1 -> 4: 3 minutes, time elapsed=3
- 4 -> 5: 3 minutes, time elapsed=6
Hence the minimum time needed is 6 minutes.

The red path shows the path to get the second minimum time.
- Start at 1, time elapsed=0
- 1 -> 3: 3 minutes, time elapsed=3
- 3 -> 4: 3 minutes, time elapsed=6
- Wait at 4 for 4 minutes, time elapsed=10
- 4 -> 5: 3 minutes, time elapsed=13
Hence the second minimum time is 13 minutes.      

Example 2:

Input: n = 2, edges = [[1,2]], time = 3, change = 2
Output: 11
Explanation:
The minimum time path is 1 -> 2 with time = 3 minutes.
The second minimum time path is 1 -> 2 -> 1 -> 2 with time = 11 minutes.

Constraints:

  • 2 <= n <= 104
  • n - 1 <= edges.length <= min(2 * 104, n * (n - 1) / 2)
  • edges[i].length == 2
  • 1 <= ui, vi <= n
  • ui != vi
  • There are no duplicate edges.
  • Each vertex can be reached directly or indirectly from every other vertex.
  • 1 <= time, change <= 103

Solution: Best first search

Since we’re only looking for second best, to avoid TLE, for each vertex, keep two best time to arrival is sufficient.

Time complexity: O(2ElogE)
Space complexity: O(V+E)

C++

花花酱 LeetCode 2044. Count Number of Maximum Bitwise-OR Subsets

Given an integer array nums, find the maximum possible bitwise OR of a subset of nums and return the number of different non-empty subsets with the maximum bitwise OR.

An array a is a subset of an array b if a can be obtained from b by deleting some (possibly zero) elements of b. Two subsets are considered different if the indices of the elements chosen are different.

The bitwise OR of an array a is equal to a[0] OR a[1] OR ... OR a[a.length - 1] (0-indexed).

Example 1:

Input: nums = [3,1]
Output: 2
Explanation: The maximum possible bitwise OR of a subset is 3. There are 2 subsets with a bitwise OR of 3:
- [3]
- [3,1]

Example 2:

Input: nums = [2,2,2]
Output: 7
Explanation: All non-empty subsets of [2,2,2] have a bitwise OR of 2. There are 23 - 1 = 7 total subsets.

Example 3:

Input: nums = [3,2,1,5]
Output: 6
Explanation: The maximum possible bitwise OR of a subset is 7. There are 6 subsets with a bitwise OR of 7:
- [3,5]
- [3,1,5]
- [3,2,5]
- [3,2,1,5]
- [2,5]
- [2,1,5]

Constraints:

  • 1 <= nums.length <= 16
  • 1 <= nums[i] <= 105

Solution: Brute Force

Try all possible subsets

Time complexity: O(n*2n)
Space complexity: O(1)

C++

花花酱 LeetCode 2043. Simple Bank System

You have been tasked with writing a program for a popular bank that will automate all its incoming transactions (transfer, deposit, and withdraw). The bank has n accounts numbered from 1 to n. The initial balance of each account is stored in a 0-indexed integer array balance, with the (i + 1)th account having an initial balance of balance[i].

Execute all the valid transactions. A transaction is valid if:

  • The given account number(s) are between 1 and n, and
  • The amount of money withdrawn or transferred from is less than or equal to the balance of the account.

Implement the Bank class:

  • Bank(long[] balance) Initializes the object with the 0-indexed integer array balance.
  • boolean transfer(int account1, int account2, long money) Transfers money dollars from the account numbered account1 to the account numbered account2. Return true if the transaction was successful, false otherwise.
  • boolean deposit(int account, long money) Deposit money dollars into the account numbered account. Return true if the transaction was successful, false otherwise.
  • boolean withdraw(int account, long money) Withdraw money dollars from the account numbered account. Return true if the transaction was successful, false otherwise.

Example 1:

Input
["Bank", "withdraw", "transfer", "deposit", "transfer", "withdraw"]
[[[10, 100, 20, 50, 30]], [3, 10], [5, 1, 20], [5, 20], [3, 4, 15], [10, 50]]
Output

[null, true, true, true, false, false]

Explanation Bank bank = new Bank([10, 100, 20, 50, 30]); bank.withdraw(3, 10); // return true, account 3 has a balance of $20, so it is valid to withdraw $10. // Account 3 has $20 – $10 = $10. bank.transfer(5, 1, 20); // return true, account 5 has a balance of $30, so it is valid to transfer $20. // Account 5 has $30 – $20 = $10, and account 1 has $10 + $20 = $30. bank.deposit(5, 20); // return true, it is valid to deposit $20 to account 5. // Account 5 has $10 + $20 = $30. bank.transfer(3, 4, 15); // return false, the current balance of account 3 is $10, // so it is invalid to transfer $15 from it. bank.withdraw(10, 50); // return false, it is invalid because account 10 does not exist.

Constraints:

  • n == balance.length
  • 1 <= n, account, account1, account2 <= 105
  • 0 <= balance[i], money <= 1012
  • At most 104 calls will be made to each function transferdepositwithdraw.

Solution: Simulation

Time complexity: O(1) per operation
Space complexity: O(n) for n accounts

C++

花花酱 LeetCode 2042. Check if Numbers Are Ascending in a Sentence

A sentence is a list of tokens separated by a single space with no leading or trailing spaces. Every token is either a positive number consisting of digits 0-9 with no leading zeros, or a word consisting of lowercase English letters.

  • For example, "a puppy has 2 eyes 4 legs" is a sentence with seven tokens: "2" and "4" are numbers and the other tokens such as "puppy" are words.

Given a string s representing a sentence, you need to check if all the numbers in s are strictly increasing from left to right (i.e., other than the last number, each number is strictly smaller than the number on its right in s).

Return true if so, or false otherwise.

Example 1:

example-1
Input: s = "1 box has 3 blue 4 red 6 green and 12 yellow marbles"
Output: true
Explanation: The numbers in s are: 1, 3, 4, 6, 12.
They are strictly increasing from left to right: 1 < 3 < 4 < 6 < 12.

Example 2:

Input: s = "hello world 5 x 5"
Output: false
Explanation: The numbers in s are: 5, 5. They are not strictly increasing.

Example 3:

example-3
Input: s = "sunset is at 7 51 pm overnight lows will be in the low 50 and 60 s"
Output: false
Explanation: The numbers in s are: 7, 51, 50, 60. They are not strictly increasing.

Example 4:

Input: s = "4 5 11 26"
Output: true
Explanation: The numbers in s are: 4, 5, 11, 26.
They are strictly increasing from left to right: 4 < 5 < 11 < 26.

Constraints:

  • 3 <= s.length <= 200
  • s consists of lowercase English letters, spaces, and digits from 0 to 9, inclusive.
  • The number of tokens in s is between 2 and 100, inclusive.
  • The tokens in s are separated by a single space.
  • There are at least two numbers in s.
  • Each number in s is a positive number less than 100, with no leading zeros.
  • s contains no leading or trailing spaces.

Solution: String

Time complexity: O(n)
Space complexity: O(1)

C++