In a gold mine grid of size m * n, each cell in this mine has an integer representing the amount of gold in that cell, 0 if it is empty.

Return the maximum amount of gold you can collect under the conditions:

• Every time you are located in a cell you will collect all the gold in that cell.
• From your position you can walk one step to the left, right, up or down.
• You can’t visit the same cell more than once.
• Never visit a cell with 0 gold.
• You can start and stop collecting gold from any position in the grid that has some gold.

Example 1:

Input: grid = [[0,6,0],[5,8,7],[0,9,0]]
Output: 24
Explanation:
[[0,6,0],
[5,8,7],
[0,9,0]]
Path to get the maximum gold, 9 -> 8 -> 7.


Example 2:

Input: grid = [[1,0,7],[2,0,6],[3,4,5],[0,3,0],[9,0,20]]
Output: 28
Explanation:
[[1,0,7],
[2,0,6],
[3,4,5],
[0,3,0],
[9,0,20]]
Path to get the maximum gold, 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7.


Constraints:

• 1 <= grid.length, grid[i].length <= 15
• 0 <= grid[i][j] <= 100
• There are at most 25 cells containing gold.

Solution: DFS

Time compleixty: O(4^25) ???
Space complexity: O(25)

C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website

Paypal
Venmo
huahualeetcode