Press "Enter" to skip to content

Posts tagged as “binary tree”

花花酱 LeetCode 654. Maximum Binary Tree

 

Given an integer array with no duplicates. A maximum tree building on this array is defined as follow:

  1. The root is the maximum number in the array.
  2. The left subtree is the maximum tree constructed from left part subarray divided by the maximum number.
  3. The right subtree is the maximum tree constructed from right part subarray divided by the maximum number.

Construct the maximum tree by the given array and output the root node of this tree.

Example 1:

Idea:

Recursion

Solution:

With copy

Time complexity: O(nlogn) ~ O(n^2)

Space complexity: O(nlogn) ~ O(n^2)

running time 79ms

Without copy

Time complexity: O(nlogn) ~ O(n^2)

Space complexity: O(logn) ~ O(n)

running time 66ms

 

花花酱 LeetCode 669. Trim a Binary Search Tree

Given a binary search tree and the lowest and highest boundaries as L and R, trim the tree so that all its elements lies in [L, R] (R >= L). You might need to change the root of the tree, so the result should return the new root of the trimmed binary search tree.

Example 1:

Example 2:

This problem can be solved with recursion

There 3 cases in total depends on the root value and L, R

Time complexity: O(n)

Space complexity: O(1)

Solution:

The previous solution has potential memory leak for languages without garbage collection.

Here’s the full program to delete trimmed nodes.

Example output

 

花花酱 LeetCode 102. Binary Tree Level Order Traversal

Given a binary tree, return the level order traversal of its nodes’ values. (ie, from left to right, level by level).

For example:
Given binary tree [3,9,20,null,null,15,7],

return its level order traversal as:

Solution 1: BFS O(n)

Solution 2: DFS O(n)

 

花花酱 LeetCode 110. Balanced Binary Tree

Solution 1: O(nlogn)

Solution 2: O(n)

Java

 

Python