Press "Enter" to skip to content

Posts tagged as “flip”

花花酱 LeetCode 1975. Maximum Matrix Sum

You are given an n x n integer matrix. You can do the following operation any number of times:

  • Choose any two adjacent elements of matrix and multiply each of them by -1.

Two elements are considered adjacent if and only if they share a border.

Your goal is to maximize the summation of the matrix’s elements. Return the maximum sum of the matrix’s elements using the operation mentioned above.

Example 1:

Input: matrix = [[1,-1],[-1,1]]
Output: 4
Explanation: We can follow the following steps to reach sum equals 4:
- Multiply the 2 elements in the first row by -1.
- Multiply the 2 elements in the first column by -1.

Example 2:

Input: matrix = [[1,2,3],[-1,-2,-3],[1,2,3]]
Output: 16
Explanation: We can follow the following step to reach sum equals 16:
- Multiply the 2 last elements in the second row by -1.

Constraints:

  • n == matrix.length == matrix[i].length
  • 2 <= n <= 250
  • -105 <= matrix[i][j] <= 105

Solution: Math

Count the number of negative numbers.
1. Even negatives, we can always flip all the negatives to positives. ans = sum(abs(matrix)).
2. Odd negatives, there will be one negative left, we found the smallest abs(element) and let it become negative. ans = sum(abs(matrix))) – 2 * min(abs(matrix))

Time complexity: O(n2)
Space complexity: O(1)

C++

花花酱 LeetCode 1529. Bulb Switcher IV

There is a room with n bulbs, numbered from 0 to n-1, arranged in a row from left to right. Initially all the bulbs are turned off.

Your task is to obtain the configuration represented by target where target[i] is ‘1’ if the i-th bulb is turned on and is ‘0’ if it is turned off.

You have a switch to flip the state of the bulb, a flip operation is defined as follows:

  • Choose any bulb (index i) of your current configuration.
  • Flip each bulb from index i to n-1.

When any bulb is flipped it means that if it is 0 it changes to 1 and if it is 1 it changes to 0.

Return the minimum number of flips required to form target.

Example 1:

Input: target = "10111"
Output: 3
Explanation: Initial configuration "00000".
flip from the third bulb:  "00000" -> "00111"
flip from the first bulb:  "00111" -> "11000"
flip from the second bulb:  "11000" -> "10111"
We need at least 3 flip operations to form target.

Example 2:

Input: target = "101"
Output: 3
Explanation: "000" -> "111" -> "100" -> "101".

Example 3:

Input: target = "00000"
Output: 0

Example 4:

Input: target = "001011101"
Output: 5

Constraints:

  • 1 <= target.length <= 10^5
  • target[i] == '0' or target[i] == '1'

Solution: XOR

Flip from left to right, since flipping the a bulb won’t affect anything in the left.
We count how many times flipped so far, and that % 2 will be the state for all the bulb to the right.
If the current bulb’s state != target, we have to flip once.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 48. Rotate Image

You are given an n x n 2D matrix representing an image.

Rotate the image by 90 degrees (clockwise).

Note:

You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.

Example 1:

Given input matrix = 
[
  [1,2,3],
  [4,5,6],
  [7,8,9]
],

rotate the input matrix in-place such that it becomes:
[
  [7,4,1],
  [8,5,2],
  [9,6,3]
]

Example 2:

Given input matrix =
[
  [ 5, 1, 9,11],
  [ 2, 4, 8,10],
  [13, 3, 6, 7],
  [15,14,12,16]
], 

rotate the input matrix in-place such that it becomes:
[
  [15,13, 2, 5],
  [14, 3, 4, 1],
  [12, 6, 8, 9],
  [16, 7,10,11]
]

Solution: 2 Passes

First pass: mirror around diagonal
Second pass: mirror around y axis

Time complexity: O(n^2)
Space complexity: O(1)

C++

花花酱 LeetCode 978. Longest Turbulent Subarray

A subarray A[i], A[i+1], ..., A[j] of A is said to be turbulent if and only if:

  • For i <= k < jA[k] > A[k+1] when k is odd, and A[k] < A[k+1] when k is even;
  • OR, for i <= k < jA[k] > A[k+1] when k is even, and A[k] < A[k+1]when k is odd.

That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.

Return the length of a maximum size turbulent subarray of A.

Example 1:

Input: [9,4,2,10,7,8,8,1,9]
Output: 5
Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])

Example 2:

Input: [4,8,12,16]
Output: 2

Example 3:

Input: [100]
Output: 1

Note:

  1. 1 <= A.length <= 40000
  2. 0 <= A[i] <= 10^9

Solution: DP

Time complexity: O(n)
Space complexity: O(n) -> O(1)

C++

花花酱 LeetCode 926. Flip String to Monotone Increasing

Problem

A string of '0's and '1's is monotone increasing if it consists of some number of '0's (possibly 0), followed by some number of '1's (also possibly 0.)

We are given a string S of '0's and '1's, and we may flip any '0' to a '1' or a '1' to a '0'.

Return the minimum number of flips to make S monotone increasing.

Example 1:

Input: "00110"
Output: 1
Explanation: We flip the last digit to get 00111.

Example 2:

Input: "010110"
Output: 2
Explanation: We flip to get 011111, or alternatively 000111.

Example 3:

Input: "00011000"
Output: 2
Explanation: We flip to get 00000000.

Note:

  1. 1 <= S.length <= 20000
  2. S only consists of '0' and '1' characters.

Solution: DP

l[i] := number of flips to make S[0] ~ S[i] become all 0s.

r[i] := number of flips to make S[i] ~ S[n – 1] become all 1s.

Try all possible break point, S[0] ~ S[i – 1] are all 0s and S[i] ~ S[n-1] are all 1s.

ans = min{l[i – 1] + r[i]}

Time complexity: O(n)

Space complexity: O(n)

C++

C++ v2

C++ v2 / O(1) Space