Press "Enter" to skip to content

Posts tagged as “greedy”

花花酱 LeetCode 1899. Merge Triplets to Form Target Triplet

triplet is an array of three integers. You are given a 2D integer array triplets, where triplets[i] = [ai, bi, ci] describes the ith triplet. You are also given an integer array target = [x, y, z] that describes the triplet you want to obtain.

To obtain target, you may apply the following operation on triplets any number of times (possibly zero):

  • Choose two indices (0-indexedi and j (i != j) and update triplets[j] to become [max(ai, aj), max(bi, bj), max(ci, cj)].
    • For example, if triplets[i] = [2, 5, 3] and triplets[j] = [1, 7, 5]triplets[j] will be updated to [max(2, 1), max(5, 7), max(3, 5)] = [2, 7, 5].

Return true if it is possible to obtain the target triplet [x, y, z] as an element of triplets, or false otherwise.

Example 1:

Input: triplets = [[2,5,3],[1,8,4],[1,7,5]], target = [2,7,5]
Output: true
Explanation: Perform the following operations:
- Choose the first and last triplets [[2,5,3],[1,8,4],[1,7,5]]. Update the last triplet to be [max(2,1), max(5,7), max(3,5)] = [2,7,5]. triplets = [[2,5,3],[1,8,4],[2,7,5]]
The target triplet [2,7,5] is now an element of triplets.

Example 2:

Input: triplets = [[1,3,4],[2,5,8]], target = [2,5,8]
Output: true
Explanation: The target triplet [2,5,8] is already an element of triplets.

Example 3:

Input: triplets = [[2,5,3],[2,3,4],[1,2,5],[5,2,3]], target = [5,5,5]
Output: true
Explanation: Perform the following operations:
- Choose the first and third triplets [[2,5,3],[2,3,4],[1,2,5],[5,2,3]]. Update the third triplet to be [max(2,1), max(5,2), max(3,5)] = [2,5,5]. triplets = [[2,5,3],[2,3,4],[2,5,5],[5,2,3]].
- Choose the third and fourth triplets [[2,5,3],[2,3,4],[2,5,5],[5,2,3]]. Update the fourth triplet to be [max(2,5), max(5,2), max(5,3)] = [5,5,5]. triplets = [[2,5,3],[2,3,4],[2,5,5],[5,5,5]].
The target triplet [5,5,5] is now an element of triplets.

Example 4:

Input: triplets = [[3,4,5],[4,5,6]], target = [3,2,5]
Output: false
Explanation: It is impossible to have [3,2,5] as an element because there is no 2 in any of the triplets.

Constraints:

  • 1 <= triplets.length <= 105
  • triplets[i].length == target.length == 3
  • 1 <= ai, bi, ci, x, y, z <= 1000

Solution: Greedy

Exclude those bad ones (whose values are greater than x, y, z), check the max value for each dimension or whether there is x, y, z for each dimension.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1889. Minimum Space Wasted From Packaging

You have n packages that you are trying to place in boxes, one package in each box. There are m suppliers that each produce boxes of different sizes (with infinite supply). A package can be placed in a box if the size of the package is less than or equal to the size of the box.

The package sizes are given as an integer array packages, where packages[i] is the size of the ith package. The suppliers are given as a 2D integer array boxes, where boxes[j] is an array of box sizes that the jth supplier produces.

You want to choose a single supplier and use boxes from them such that the total wasted space is minimized. For each package in a box, we define the space wasted to be size of the box - size of the package. The total wasted space is the sum of the space wasted in all the boxes.

  • For example, if you have to fit packages with sizes [2,3,5] and the supplier offers boxes of sizes [4,8], you can fit the packages of size-2 and size-3 into two boxes of size-4 and the package with size-5 into a box of size-8. This would result in a waste of (4-2) + (4-3) + (8-5) = 6.

Return the minimum total wasted space by choosing the box supplier optimally, or -1 if it is impossible to fit all the packages inside boxes. Since the answer may be large, return it modulo 109 + 7.

Example 1:

Input: packages = [2,3,5], boxes = [[4,8],[2,8]]
Output: 6
Explanation: It is optimal to choose the first supplier, using two size-4 boxes and one size-8 box.
The total waste is (4-2) + (4-3) + (8-5) = 6.

Example 2:

Input: packages = [2,3,5], boxes = [[1,4],[2,3],[3,4]]
Output: -1
Explanation: There is no box that the package of size 5 can fit in.

Example 3:

Input: packages = [3,5,8,10,11,12], boxes = [[12],[11,9],[10,5,14]]
Output: 9
Explanation: It is optimal to choose the third supplier, using two size-5 boxes, two size-10 boxes, and two size-14 boxes.
The total waste is (5-3) + (5-5) + (10-8) + (10-10) + (14-11) + (14-12) = 9.

Constraints:

  • n == packages.length
  • m == boxes.length
  • 1 <= n <= 105
  • 1 <= m <= 105
  • 1 <= packages[i] <= 105
  • 1 <= boxes[j].length <= 105
  • 1 <= boxes[j][k] <= 105
  • sum(boxes[j].length) <= 105
  • The elements in boxes[j] are distinct.

Solution: Greedy + Binary Search

  1. sort packages and boxes
  2. for each box find all (unpacked) packages that are smaller or equal to itself.

Time complexity: O(nlogn) + O(mlogm) + O(mlogn)
Space complexity: O(1)

C++

花花酱 LeetCode 1881. Maximum Value after Insertion

You are given a very large integer n, represented as a string,​​​​​​ and an integer digit x. The digits in n and the digit x are in the inclusive range [1, 9], and n may represent a negative number.

You want to maximize n‘s numerical value by inserting x anywhere in the decimal representation of n​​​​​​. You cannot insert x to the left of the negative sign.

  • For example, if n = 73 and x = 6, it would be best to insert it between 7 and 3, making n = 763.
  • If n = -55 and x = 2, it would be best to insert it before the first 5, making n = -255.

Return a string representing the maximum value of n​​​​​​ after the insertion.

Example 1:

Input: n = "99", x = 9
Output: "999"
Explanation: The result is the same regardless of where you insert 9.

Example 2:

Input: n = "-13", x = 2
Output: "-123"
Explanation: You can make n one of {-213, -123, -132}, and the largest of those three is -123.

Constraints:

  • 1 <= n.length <= 105
  • 1 <= x <= 9
  • The digits in n​​​ are in the range [1, 9].
  • n is a valid representation of an integer.
  • In the case of a negative n,​​​​​​ it will begin with '-'.

Solution: Greedy

Find the best position to insert x. For positive numbers, insert x to the first position i such that s[i] < x or s[i] > x for negatives.

Time complexity: O(n)
Space complexity: O(1)

C++

花花酱 LeetCode 1877. Minimize Maximum Pair Sum in Array

The pair sum of a pair (a,b) is equal to a + b. The maximum pair sum is the largest pair sum in a list of pairs.

  • For example, if we have pairs (1,5)(2,3), and (4,4), the maximum pair sum would be max(1+5, 2+3, 4+4) = max(6, 5, 8) = 8.

Given an array nums of even length n, pair up the elements of nums into n / 2 pairs such that:

  • Each element of nums is in exactly one pair, and
  • The maximum pair sum is minimized.

Return the minimized maximum pair sum after optimally pairing up the elements.

Example 1:

Input: nums = [3,5,2,3]
Output: 7
Explanation: The elements can be paired up into pairs (3,3) and (5,2).
The maximum pair sum is max(3+3, 5+2) = max(6, 7) = 7.

Example 2:

Input: nums = [3,5,4,2,4,6]
Output: 8
Explanation: The elements can be paired up into pairs (3,5), (4,4), and (6,2).
The maximum pair sum is max(3+5, 4+4, 6+2) = max(8, 8, 8) = 8.

Constraints:

  • n == nums.length
  • 2 <= n <= 105
  • n is even.
  • 1 <= nums[i] <= 105

Solution: Greedy

Sort the elements, pair nums[i] with nums[n – i – 1] and find the max pair.

Time complexity: O(nlogn) -> O(n) counting sort.
Space complexity: O(1)

C++

花花酱 LeetCode 1864. Minimum Number of Swaps to Make the Binary String Alternating

Given a binary string s, return the minimum number of character swaps to make it alternating, or -1 if it is impossible.

The string is called alternating if no two adjacent characters are equal. For example, the strings "010" and "1010" are alternating, while the string "0100" is not.

Any two characters may be swapped, even if they are not adjacent.

Example 1:

Input: s = "111000"
Output: 1
Explanation: Swap positions 1 and 4: "111000" -> "101010"
The string is now alternating.

Example 2:

Input: s = "010"
Output: 0
Explanation: The string is already alternating, no swaps are needed.

Example 3:

Input: s = "1110"
Output: -1

Constraints:

  • 1 <= s.length <= 1000
  • s[i] is either '0' or '1'.

Solution: Greedy

Two passes, make the string starts with ‘0’ or ‘1’, count how many 0/1 swaps needed. 0/1 swaps must equal otherwise it’s impossible to swap.

Time complexity: O(n)
Space complexity: O(1)

C++