Press "Enter" to skip to content

Posts tagged as “hard”

花花酱 LeetCode 1001. Grid Illumination

On a N x N grid of cells, each cell (x, y) with 0 <= x < N and 0 <= y < N has a lamp.

Initially, some number of lamps are on.  lamps[i] tells us the location of the i-th lamp that is on.  Each lamp that is on illuminates every square on its x-axis, y-axis, and both diagonals (similar to a Queen in chess).

For the i-th query queries[i] = (x, y), the answer to the query is 1 if the cell (x, y) is illuminated, else 0.

After each query (x, y) [in the order given by queries], we turn off any lamps that are at cell (x, y) or are adjacent 8-directionally (ie., share a corner or edge with cell (x, y).)

Return an array of answers.  Each value answer[i] should be equal to the answer of the i-th query queries[i].

Example 1:

Input: N = 5, lamps = [[0,0],[4,4]], queries = [[1,1],[1,0]]
Output: [1,0]
Explanation: 
Before performing the first query we have both lamps [0,0] and [4,4] on.
The grid representing which cells are lit looks like this, where [0,0] is the top left corner, and [4,4] is the bottom right corner:
1 1 1 1 1
1 1 0 0 1
1 0 1 0 1
1 0 0 1 1
1 1 1 1 1
Then the query at [1, 1] returns 1 because the cell is lit.  After this query, the lamp at [0, 0] turns off, and the grid now looks like this:
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 1
Before performing the second query we have only the lamp [4,4] on.  Now the query at [1,0] returns 0, because the cell is no longer lit.

Note:

  1. 1 <= N <= 10^9
  2. 0 <= lamps.length <= 20000
  3. 0 <= queries.length <= 20000
  4. lamps[i].length == queries[i].length == 2

Solution: HashTable

use lx, ly, lp, lq to track the # of lamps that covers each row, col, diagonal, antidiagonal

Time complexity: O(|L| + |Q|)
Space complexity: O(|L|)

C++

C++ v2

花花酱 LeetCode 995. Minimum Number of K Consecutive Bit Flips

In an array A containing only 0s and 1s, a K-bit flip consists of choosing a (contiguous) subarray of length K and simultaneously changing every 0 in the subarray to 1, and every 1 in the subarray to 0.

Return the minimum number of K-bit flips required so that there is no 0 in the array.  If it is not possible, return -1.

Example 1:

Input: A = [0,1,0], K = 1
Output: 2
Explanation: Flip A[0], then flip A[2].

Example 2:

Input: A = [1,1,0], K = 2
Output: -1
Explanation: No matter how we flip subarrays of size 2, we can't make the array become [1,1,1].

Example 3:

Input: A = [0,0,0,1,0,1,1,0], K = 3
Output: 3
Explanation:
Flip A[0],A[1],A[2]: A becomes [1,1,1,1,0,1,1,0]
Flip A[4],A[5],A[6]: A becomes [1,1,1,1,1,0,0,0]
Flip A[5],A[6],A[7]: A becomes [1,1,1,1,1,1,1,1]

Note:

  1. 1 <= A.length <= 30000
  2. 1 <= K <= A.length

Solution: Greedy

From left most, if there is a 0, that bit must be flipped since the right ones won’t affect left ones.

Time complexity: O(nk) -> O(k)
Space complexity: O(1)

C++ / O(nk)

C++ / O(n)

花花酱 LeetCode 992. Subarrays with K Different Integers

Given an array A of positive integers, call a (contiguous, not necessarily distinct) subarray of A good if the number of different integers in that subarray is exactly K.

(For example, [1,2,3,1,2] has 3 different integers: 12, and 3.)

Return the number of good subarrays of A.

Example 1:

Input: A = [1,2,1,2,3], K = 2
Output: 7
Explanation: Subarrays formed with exactly 2 different integers: [1,2], [2,1], [1,2], [2,3], [1,2,1], [2,1,2], [1,2,1,2].

Example 2:

Input: A = [1,2,1,3,4], K = 3
Output: 3
Explanation: Subarrays formed with exactly 3 different integers: [1,2,1,3], [2,1,3], [1,3,4].

Note:

  1. 1 <= A.length <= 20000
  2. 1 <= A[i] <= A.length
  3. 1 <= K <= A.length

Solution: Two pointers + indirection

Let f(x) denote the number of subarrays with x or less distinct numbers.
ans = f(K) – f(K-1)
It takes O(n) Time and O(n) Space to compute f(x)

C++

Related Problems

花花酱 LeetCode 982. Triples with Bitwise AND Equal To Zero

Given an array of integers A, find the number of triples of indices (i, j, k) such that:

  • 0 <= i < A.length
  • 0 <= j < A.length
  • 0 <= k < A.length
  • A[i] & A[j] & A[k] == 0, where & represents the bitwise-AND operator.

Example 1:

Input: [2,1,3]
Output: 12
Explanation: We could choose the following i, j, k triples:
(i=0, j=0, k=1) : 2 & 2 & 1
(i=0, j=1, k=0) : 2 & 1 & 2
(i=0, j=1, k=1) : 2 & 1 & 1
(i=0, j=1, k=2) : 2 & 1 & 3
(i=0, j=2, k=1) : 2 & 3 & 1
(i=1, j=0, k=0) : 1 & 2 & 2
(i=1, j=0, k=1) : 1 & 2 & 1
(i=1, j=0, k=2) : 1 & 2 & 3
(i=1, j=1, k=0) : 1 & 1 & 2
(i=1, j=2, k=0) : 1 & 3 & 2
(i=2, j=0, k=1) : 3 & 2 & 1
(i=2, j=1, k=0) : 3 & 1 & 2

Note:

  1. 1 <= A.length <= 1000
  2. 0 <= A[i] < 2^16

Solution: Counting

Time complexity: O(n^2 + n * max(A))
Space complexity: O(max(A))

C++

花花酱 LeetCode 85. Maximal Rectangle

Given a 2D binary matrix filled with 0’s and 1’s, find the largest rectangle containing only 1’s and return its area.

Example:

Input:
[
  ["1","0","1","0","0"],
  ["1","0","1","1","1"],
  ["1","1","1","1","1"],
  ["1","0","0","1","0"]
]
Output: 6

Solution: DP

Time complexity: O(m^2*n)
Space complexity: O(mn)

dp[i][j] := max length of all 1 sequence ends with col j, at the i-th row.
transition:
dp[i][j] = 0 if matrix[i][j] == ‘0’
= dp[i][j-1] + 1 if matrix[i][j] == ‘1’

C++