Press "Enter" to skip to content

Posts tagged as “hard”

花花酱 LeetCode 126. Word Ladder II

Problem:

Given two words (beginWord and endWord), and a dictionary’s word list, find all shortest transformation sequence(s) from beginWord to endWord, such that:

  1. Only one letter can be changed at a time
  2. Each transformed word must exist in the word list. Note that beginWord is not a transformed word.

For example,

Given:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log","cog"]

Return

Note:

  • Return an empty list if there is no such transformation sequence.
  • All words have the same length.
  • All words contain only lowercase alphabetic characters.
  • You may assume no duplicates in the word list.
  • You may assume beginWord and endWord are non-empty and are not the same.

Idea:

BFS to construct the graph + DFS to extract the paths



Solutions:

C++, BFS 1


C++ / BFS 2

 

C++ / Bidirectional BFS

 

花花酱 LeetCode 218. The Skyline Problem

Problem:

A city’s skyline is the outer contour of the silhouette formed by all the buildings in that city when viewed from a distance. Now suppose you are given the locations and height of all the buildings as shown on a cityscape photo (Figure A), write a program to output the skyline formed by these buildings collectively (Figure B).

Buildings Skyline Contour

The geometric information of each building is represented by a triplet of integers [Li, Ri, Hi], where Li and Ri are the x coordinates of the left and right edge of the ith building, respectively, and Hi is its height. It is guaranteed that 0 ≤ Li, Ri ≤ INT_MAX0 < Hi ≤ INT_MAX, and Ri - Li > 0. You may assume all buildings are perfect rectangles grounded on an absolutely flat surface at height 0.

For instance, the dimensions of all buildings in Figure A are recorded as: [ [2 9 10], [3 7 15], [5 12 12], [15 20 10], [19 24 8] ] .

The output is a list of “key points” (red dots in Figure B) in the format of [ [x1,y1], [x2, y2], [x3, y3], ... ] that uniquely defines a skyline. A key point is the left endpoint of a horizontal line segment. Note that the last key point, where the rightmost building ends, is merely used to mark the termination of the skyline, and always has zero height. Also, the ground in between any two adjacent buildings should be considered part of the skyline contour.

For instance, the skyline in Figure B should be represented as:[ [2 10], [3 15], [7 12], [12 0], [15 10], [20 8], [24, 0] ].

Notes:

  • The number of buildings in any input list is guaranteed to be in the range [0, 10000].
  • The input list is already sorted in ascending order by the left x position Li.
  • The output list must be sorted by the x position.
  • There must be no consecutive horizontal lines of equal height in the output skyline. For instance, [...[2 3], [4 5], [7 5], [11 5], [12 7]...] is not acceptable; the three lines of height 5 should be merged into one in the final output as such: [...[2 3], [4 5], [12 7], ...]

 

Idea:

Sweep line



Time Complexity:

O(nlogn)

Space Complexity:

O(n)

Solution1: Heap 

C++

Java

Solution 2: Multiset

C++

 

花花酱 LeetCode 664. Strange Printer

Problem:

There is a strange printer with the following two special requirements:

  1. The printer can only print a sequence of the same character each time.
  2. At each turn, the printer can print new characters starting from and ending at any places, and will cover the original existing characters.

Given a string consists of lower English letters only, your job is to count the minimum number of turns the printer needed in order to print it.

Example 1:

Example 2:

Hint: Length of the given string will not exceed 100.

Idea:

Dynamic programming



Time Complexity: 

O(n^3)

Space Complexity:

O(n^2)

Solution:

C++

Java

Python3

花花酱 LeetCode 297. Serialize and Deserialize Binary Tree

Problem:

Serialization is the process of converting a data structure or object into a sequence of bits so that it can be stored in a file or memory buffer, or transmitted across a network connection link to be reconstructed later in the same or another computer environment.

Design an algorithm to serialize and deserialize a binary tree. There is no restriction on how your serialization/deserialization algorithm should work. You just need to ensure that a binary tree can be serialized to a string and this string can be deserialized to the original tree structure.

For example, you may serialize the following tree

as "[1,2,3,null,null,4,5]", just the same as how LeetCode OJ serializes a binary tree. You do not necessarily need to follow this format, so please be creative and come up with different approaches yourself.

Note: Do not use class member/global/static variables to store states. Your serialize and deserialize algorithms should be stateless.

https://leetcode.com/problems/serialize-and-deserialize-binary-tree/description/

Idea:

Recursion

Time Complexity O(n)

Solution 1: ASCII

C++

Solution 2: Binary

C++

C++ (string)

Related Problems

花花酱 LeetCode 381. Insert Delete GetRandom O(1) – Duplicates allowed

https://leetcode.com/problems/insert-delete-getrandom-o1-duplicates-allowed/description/

Problem:

Design a data structure that supports all following operations in average O(1) time.

Note: Duplicate elements are allowed.

  1. insert(val): Inserts an item val to the collection.
  2. remove(val): Removes an item val from the collection if present.
  3. getRandom: Returns a random element from current collection of elements. The probability of each element being returned is linearly related to the number of same value the collection contains.

Idea:

Hashtable + array

Solution:

 

Java

 

Related Problems: