Implement the BSTIterator
class that represents an iterator over the in-order traversal of a binary search tree (BST):
BSTIterator(TreeNode root)
Initializes an object of theBSTIterator
class. Theroot
of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.boolean hasNext()
Returnstrue
if there exists a number in the traversal to the right of the pointer, otherwise returnsfalse
.int next()
Moves the pointer to the right, then returns the number at the pointer.
Notice that by initializing the pointer to a non-existent smallest number, the first call to next()
will return the smallest element in the BST.
You may assume that next()
calls will always be valid. That is, there will be at least a next number in the in-order traversal when next()
is called.
Example 1:

Input ["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"] [[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []] Output
[null, 3, 7, true, 9, true, 15, true, 20, false]
Explanation BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]); bSTIterator.next(); // return 3 bSTIterator.next(); // return 7 bSTIterator.hasNext(); // return True bSTIterator.next(); // return 9 bSTIterator.hasNext(); // return True bSTIterator.next(); // return 15 bSTIterator.hasNext(); // return True bSTIterator.next(); // return 20 bSTIterator.hasNext(); // return False
Constraints:
- The number of nodes in the tree is in the range
[1, 105]
. 0 <= Node.val <= 106
- At most
105
calls will be made tohasNext
, andnext
.
Follow up:
- Could you implement
next()
andhasNext()
to run in averageO(1)
time and useO(h)
memory, whereh
is the height of the tree?
Solution: In-order traversal using a stack
Use a stack to simulate in-order traversal.
Each next, we walk to the left most (smallest) node and push all the nodes along the path to the stack.
Then pop the top one t as return val, our next node to explore is the right child of t.
Time complexity: amortized O(1) for next() call.
Space complexity: O(n)
C++
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
// Author: Huahua /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class BSTIterator { public: BSTIterator(TreeNode* root) : root_(root) {} int next() { while (root_) { s_.push(root_); root_ = root_->left; } TreeNode* t = s_.top(); s_.pop(); root_ = t->right; return t->val; } bool hasNext() { return (root_ || !s_.empty()); } private: TreeNode* root_; stack<TreeNode*> s_; }; /** * Your BSTIterator object will be instantiated and called as such: * BSTIterator* obj = new BSTIterator(root); * int param_1 = obj->next(); * bool param_2 = obj->hasNext(); */ |
请尊重作者的劳动成果,转载请注明出处!花花保留对文章/视频的所有权利。
如果您喜欢这篇文章/视频,欢迎您捐赠花花。
If you like my articles / videos, donations are welcome.
Be First to Comment