There is a family tree rooted at 0
consisting of n
nodes numbered 0
to n - 1
. You are given a 0-indexed integer array parents
, where parents[i]
is the parent for node i
. Since node 0
is the root, parents[0] == -1
.
There are 105
genetic values, each represented by an integer in the inclusive range [1, 105]
. You are given a 0-indexed integer array nums
, where nums[i]
is a distinct genetic value for node i
.
Return an array ans
of length n
where ans[i]
is the smallest genetic value that is missing from the subtree rooted at node i
.
The subtree rooted at a node x
contains node x
and all of its descendant nodes.
Example 1:
Input: parents = [-1,0,0,2], nums = [1,2,3,4] Output: [5,1,1,1] Explanation: The answer for each subtree is calculated as follows: - 0: The subtree contains nodes [0,1,2,3] with values [1,2,3,4]. 5 is the smallest missing value. - 1: The subtree contains only node 1 with value 2. 1 is the smallest missing value. - 2: The subtree contains nodes [2,3] with values [3,4]. 1 is the smallest missing value. - 3: The subtree contains only node 3 with value 4. 1 is the smallest missing value.
Example 2:
Input: parents = [-1,0,1,0,3,3], nums = [5,4,6,2,1,3] Output: [7,1,1,4,2,1] Explanation: The answer for each subtree is calculated as follows: - 0: The subtree contains nodes [0,1,2,3,4,5] with values [5,4,6,2,1,3]. 7 is the smallest missing value. - 1: The subtree contains nodes [1,2] with values [4,6]. 1 is the smallest missing value. - 2: The subtree contains only node 2 with value 6. 1 is the smallest missing value. - 3: The subtree contains nodes [3,4,5] with values [2,1,3]. 4 is the smallest missing value. - 4: The subtree contains only node 4 with value 1. 2 is the smallest missing value. - 5: The subtree contains only node 5 with value 3. 1 is the smallest missing value.
Example 3:
Input: parents = [-1,2,3,0,2,4,1], nums = [2,3,4,5,6,7,8] Output: [1,1,1,1,1,1,1] Explanation: The value 1 is missing from all the subtrees.
Constraints:
n == parents.length == nums.length
2 <= n <= 105
0 <= parents[i] <= n - 1
fori != 0
parents[0] == -1
parents
represents a valid tree.1 <= nums[i] <= 105
- Each
nums[i]
is distinct.
Solution: DFS on a single path
One ancestors of node with value of 1 will have missing values greater than 1. We do a dfs on the path that from node with value 1 to the root.
Time complexity: O(n + max(nums))
Space complexity: O(n + max(nums))
C++
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
// Author: Huahua class Solution { public: vector<int> smallestMissingValueSubtree(vector<int>& parents, vector<int>& nums) { const int n = parents.size(); vector<int> ans(n, 1); vector<int> seen(100002); vector<vector<int>> g(n); for (int i = 1; i < n; ++i) g[parents[i]].push_back(i); function<void(int)> dfs = [&](int u) { if (seen[nums[u]]++) return; for (int v : g[u]) dfs(v); }; int u = find(begin(nums), end(nums), 1) - begin(nums); for (int l = 1; u < n && u != -1; u = parents[u]) { dfs(u); while (seen[l]) ++l; ans[u] = l; } return ans; } }; |
请尊重作者的劳动成果,转载请注明出处!花花保留对文章/视频的所有权利。
如果您喜欢这篇文章/视频,欢迎您捐赠花花。
If you like my articles / videos, donations are welcome.
Be First to Comment