You are given a 2D integer array descriptions where descriptions[i] = [parenti, childi, isLefti] indicates that parenti is the parent of childi in a binary tree of unique values. Furthermore,

• If isLefti == 1, then childi is the left child of parenti.
• If isLefti == 0, then childi is the right child of parenti.

Construct the binary tree described by descriptions and return its root.

The test cases will be generated such that the binary tree is valid.

Example 1:

Input: descriptions = [[20,15,1],[20,17,0],[50,20,1],[50,80,0],[80,19,1]]
Output: [50,20,80,15,17,19]
Explanation: The root node is the node with value 50 since it has no parent.
The resulting binary tree is shown in the diagram.


Example 2:

Input: descriptions = [[1,2,1],[2,3,0],[3,4,1]]
Output: [1,2,null,null,3,4]
Explanation: The root node is the node with value 1 since it has no parent.
The resulting binary tree is shown in the diagram.


Constraints:

• 1 <= descriptions.length <= 104
• descriptions[i].length == 3
• 1 <= parenti, childi <= 105
• 0 <= isLefti <= 1
• The binary tree described by descriptions is valid.

## Solution: Hashtable + Recursion

1. Use one hashtable to track the children of each node.
2. Use another hashtable to track the parent of each node.
3. Find the root who doesn’t have parent.
4. Build the tree recursively from root.

Time complexity: O(n)
Space complexity: O(n)

## C++

If you like my articles / videos, donations are welcome.

Buy anything from Amazon to support our website

Paypal
Venmo
huahualeetcode