Given a square matrix mat
, return the sum of the matrix diagonals.
Only include the sum of all the elements on the primary diagonal and all the elements on the secondary diagonal that are not part of the primary diagonal.
Example 1:

Input: mat = [[1,2,3], [4,5,6], [7,8,9]] Output: 25 Explanation: Diagonals sum: 1 + 5 + 9 + 3 + 7 = 25 Notice that element mat[1][1] = 5 is counted only once.
Example 2:
Input: mat = [[1,1,1,1], [1,1,1,1], [1,1,1,1], [1,1,1,1]] Output: 8
Example 3:
Input: mat = [[5]] Output: 5
Constraints:
n == mat.length == mat[i].length
1 <= n <= 100
1 <= mat[i][j] <= 100
Solution: Brute Force
Note: if n is odd, be careful not to double count the center one.
Time complexity: O(n)
Space complexity: O(1)
C++
1 2 3 4 5 6 7 8 9 10 11 |
class Solution { public: int diagonalSum(vector<vector<int>>& mat) { const int n = mat.size(); int ans = 0; for (int i = 0; i < n; ++i) ans += mat[i][i] + mat[i][n - i - 1]; if (n & 1) ans -= mat[n / 2][n / 2]; return ans; } }; |
请尊重作者的劳动成果,转载请注明出处!花花保留对文章/视频的所有权利。
如果您喜欢这篇文章/视频,欢迎您捐赠花花。
If you like my articles / videos, donations are welcome.
Be First to Comment